染料敏化
太阳能电池(DSSC)具有转化效率高和成本低等特点,是近二十年来最具潜力的
光伏装置[1,2]
当前关于DSSC的研究主要集中在四个方面:(1)多孔结构的金属氧化物半导体;(2)染料分子;(3)电解质;(4)对电极
对电极的主要作用是将外电路收集的电子转移至电池内部,并催化还原氧化态电解质,对DSSC的性能起关键性作用[3,4]
Pt电极具有优异的导电性和催化活性但是价格昂贵,限制了DSSC的商业化[5]
双面太阳能电池可从正面和背面吸收太阳光,提高太阳光的利用率,因此设计透明对电极、构建双面太阳能电池是提高电池的PCE、降低成本的途径之一[6,7]
使用透明对电极组装的双面电池能吸收周围反射的光,可提高50%电子进行能量转化[8,9]
因此研发性能优异的透明非Pt对电极对DSSC的工业化进程有重要的意义
透明对电极包括金属线[10]、金属化合物[6,11,12]或导电聚合物[13,14]等,已应用于双面DSSC中,并在通过调节大量参数提高其效率和稳定性等方面取得了一定的进展
但是,对电极的透明度难以控制,碘电解质(I-/I3-)固有颜色较深、透明性较差且强烈吸收可见光,降低了双面DSSC的效率[8,15]
钴电解质(Co2+/Co3+)的腐蚀性低、氧化还原电位高且吸光性弱,有一定的优势[16,17]
过渡金属化合物具有与Pt类似的电子结构和催化活性[18]
本文用层层自组装法制备M-TCPP(M=Ni、Fe)薄膜,然后原位硒化制备MSe2和氮掺杂碳的复合透明膜(MSe2@NCF),用作对电极,同时结合钴电解质的特点制备性能优异的双面DSSC
通过分析MSe2@NCF的形貌特点、结构组成及化学价态、
电化学性能,研究其对钴电解质的催化活性,并探讨DSSC光电转化效率与MSe2@NCF的催化活性和透明性的关系
1 实验方法1.1 MSe2@NCF对电极的制备
实验用药品都来源于Sigma-Aldrich,FTO玻璃(15 Ω/square)
用分子层层自组装M-TCPP(M=Ni、Fe)薄膜,详细步骤:先将用臭氧处理过的FTO玻璃基材在1 mmol/L Ni(Ac)2(或Fe(Ac)2)的乙醇溶液中浸润45 s(A);然后在乙醇溶剂中浸润10 s以去除没有反应的前驱体溶液(B);随后在0.2 mmol/L TCPP(5,10,15,20-(4-羧基苯基)卟啉)的乙醇溶液中浸润45 s(C),最后在乙醇溶剂中浸润10 s(B)以去除上一步没有反应的前驱体溶液,A-B-C-B为一个循环步骤
用FTO玻璃基材的浸润循环次数控制M-TCPP薄膜的厚度
将制备出的M-TCPP薄膜和硒粉置于石英舟中并放置在500℃的管式炉中,在惰性气氛下煅烧2 h,冷却后得到MSe2和氮掺杂碳的复合透明膜(MSe2@NCF)
1.2 光阳极的制备
将干净的FTO玻璃置于离子清洗器中,用臭氧处理3 min后置于40 mmol/L TiCl4水溶液中,70℃水热30 min后取出,烘干后置于500℃马弗炉中,煅烧1 h后制得TiO2致密层
然后将上述电极用丝网印刷法用TiO2浆料18NRT印膜3次,用TiO2浆料TPP200印膜1次,再将其置于500℃马弗炉中煅烧1 h,制备出TiO2光阳极
最后将TiO2光阳极放在3.08 mg Y123染料、12.5 mL叔丁醇和12.5 mL乙腈和20 mg鹅去氧胆酸组成的溶液中浸泡24 h
1.3 电解质的配置和电池的组装
双面DSSC使用的是钴电解质电解液,具体配置参数为:乙腈作溶剂,0.2 mol/L钴(Ⅱ)三联吡啶双六氟磷酸盐,0.05 mol/L钴(Ⅲ)三联吡啶三六氟磷酸盐,0.5 mol/L四-叔丁基吡啶、0.1 mol/L双(三氟甲磺酸亚胺)锂
双面DSSC的具体封装步骤:用沙林膜将光阳极和对电极隔开,然后用热封机在125℃、0.2 MPa下热压30 s;电池冷却后将其倾斜,利用毛细管原理用油泵将电解质灌入;用载玻片和沙林膜将小孔密封
1.4 性能表征
用XRD (D/Max 2400)表征材料的晶型结构
用X射线光电子能谱(Escalab 250Xi)分析材料的元素组成及化学价态
用扫描电子显微镜(SEM,Nova. Nano SEM 450)和透射电子显微镜(TEM,Jem-2100F)观测材料的形貌
实验SmileView软件测量统计纳米颗粒粒径
实验电化学工作站CHI 660E (上海,辰华)测试电化学性能
用太阳光模拟器(94023A)测试电池的光电转化效率
2 结果和讨论2.1 材料的结构和形貌
为了研究M-TCPP(M=Ni、Fe)薄膜硒化后的物质结构和组成,用XRD对样品进行了表征
由于FTO基材上沉积的样品含量较低,而FTO的特征峰很强,易将样品的XRD特征峰掩盖,图1给出了从FTO基材上超声下来的样品的XRD曲线图
图1a给出了Ni-TCPP薄膜硒化后的物相图
图1b给出了Fe-TCPP薄膜硒化后的物相图,图中24.2°处的衍生峰为碳材料(002)面的特征峰[19],而其他衍射峰分别与NiSe2晶相(JCPDS NO.41-1495)和FeSe2晶相(JCPDS NO.48-1881)的特征峰一致
这表明,Ni-TCPP薄膜和Fe-TCPP薄膜原位硒化后分别转化成NiSe2@氮掺杂碳膜(用NiSe2@NCF表示)和FeSe2@氮掺杂碳膜(用FeSe2@NCF表示)
图1
图1MSe2@NCF的XRD谱
Fig.1XRD patterns of MSe2@NCF (a) NiSe2@NC, (b) FeSe2@NC
图2a给出了FTO的SEM图,图2b~e给出了MS2@氮掺杂碳膜的SEM照片和TEM照片
从图2b可观察到,大小为20~30 nm的NiSe2颗粒均匀地分散在碳基质中
而FeS2@NCF显示出不同的SEM形貌,从2c中看不到明显的FeSe2颗粒
用TEM对MSe2@NCF进行了更详细的形貌表征,如图2d~e所示
从图2d可清晰地观察到大小均一的小黑点,进一步说明NiSe2纳米颗粒在碳材料中的高度分散性
从高倍TEM照片可清晰地观察到d值为0.18 nm的晶格条纹,与NiSe2的(311)面相匹配,进一步揭示了NiSe2的高度结晶性
同样,从图3e中也能看到一些小黑点,从高倍TEM照片可清晰地观察到d值为0.26 nm的晶格条纹,与FeSe2的(210)面相匹配
大部分FeSe2晶粒较小并可能含有少量纳米颗粒,所以在SEM图中看不到明显的FeSe2颗粒,而从高倍TEM照片可观察到FeSe2晶体
将FTO与MS2@氮掺杂碳膜的SEM照片对比,在图2b和c中仍可观察到鳞片状的氟掺杂二氧化锡层,说明NiSe2@NCF和FeSe2@NCF覆盖在FTO基材表面的膜层非常薄,从而使MSe2@NCF具有高透明性[20]
图2
图2FTO、NiSe2@NCF、FeSe2@NCF的SEM照片和NiSe2@NCF、FeSe2@NCF的TEM照片
Fig.2SEM images of FTO (a), NiSe2@NCF (b), FeSe2@NCF (c) and TEM images of NiSe2@NCF (d), FeSe2@NCF (e)
图3
图3NiSe2@NCF 和FeSe2@NCF的 XPS谱
Fig.3XPS spectra of NiSe2@NCF: (a) C1s, (b) N1s, (c) Ni2p, (d) Se3d, and FeSe2@NCF: (e) C1s, (f) N1s, (g) Fe2p, (h) Se3d
图3a~d和图3e~h分别给出了NiSe2@NCF和FeSe2@NCF的XPS谱
图3a给出了C1s谱图,图中三个特征峰分别归属于C=C、C-N、C=O键[21],而图3b中N1s的三个特征峰分别代表吡啶氮、吡咯氮和石墨氮[22]
在图3c谱图中,853.3和870.6 eV处的特征峰代表Ni2+,而855.1和872.0 eV处的特征峰归属于Ni3+[23]
图3d中的 Se3d谱可分解为2个特征峰,分别代表Se 3d5/2(55.7 eV)和Se 3d3/2(55.9 eV)[24]
图3e、f分别给出了FeSe2@NCF的C1s谱图和N1s谱图,与NiSe2@NCF的C1s谱图和N1s谱图的特征峰一致
在图3g Fe2p谱图中,710.7和716.5 eV处的特征峰分别代表Fe2p3/2和Fe2p1/2[25]
图3h给出了Se 3d谱图,可观察到Se3d3/2和Se3d5/2的特征峰,从59 eV处还可见SeOx的特征峰,说明FeSe2@NCF薄膜中有少量的SeOx[26]
M-TCPP薄膜在煅烧过程中钴原子在硒粉影响下转变成了MSe2纳米颗粒,而含氮的有机连接单元TCPP原位碳化成了氮掺杂的碳,从而使M-TCPP薄膜衍生成了均匀的MSe2@NCF
2.2 电池的性能
用Y123染料负载的TiO2作光阳极,用含有Co2+/Co3+电对的乙腈溶液作电解质,用MSe2@NCF(或Pt)作对电极组装了DSSC,并分别从正面和背面检测了DSSC的光伏性能,结果如图4a、b所示,相关的参数列于表1
从图4a、b可见,用MSe2@NCF组装双面DSSC的光伏性能可与Pt电极组装DSSC的性能媲美,其中用NiSe2@NCF组装的DSSC性能优于FeSe2@NCF组装的DSSC,从正面辐射和背面辐射分别测量出8.19%和6.02%的PCE,而Pt电极在相同条件下组装DSSC其PCE为8.46%和6.23%
NiSe2@NCF的优异性能是由NiSe2纳米颗粒和原位制备的氮掺杂碳膜的协同结果,均一分散的NiSe2纳米颗粒提供了大的比表面积,加快了电子的传输速度[27],而氮掺杂碳膜因异原子的掺杂增加了大量活性位点[28],提高了对Co3+离子还原的催化活性
图4
图4MSe2@NCF的J-V曲线
Fig.4J-V curves of DSSCs using MSe2@NCF (a) front-side irradiation; (b) rear-side irradiation; (c) UV-vis transmittance spectrums of MSe2@NCF and Pt film; (d) UV-vis curves of Co2+/Co3+ and I3-/I- electrolyte
Table 1
表1
表1MSe2@NCF对电极DSSC的光伏参数
Table 1Photovoltaic parameters of DSSC using various MSe2@NCF CEs
CE
|
Irradiation
|
VOC/V
|
JSC/mA·cm-2
|
FF/%
|
PCE/%
|
Pt
|
Front
|
0.87
|
13.92
|
69.97
|
8.46
|
Rear
|
0.85
|
10.30
|
71.08
|
6.23
|
NiSe2@NCF
|
Front
|
0.88
|
13.46
|
68.56
|
8.19
|
Rear
|
0.86
|
9.73
|
71.72
|
6.02
|
FeSe2@NCF
|
Front
|
0.88
|
12.75
|
66.43
|
7.47
|
Rear
|
0.85
|
9.13
|
69.86
|
5.44
|
多孔层的TiO2光激发大部分发生在辐射面附近,与背面辐射比较从正面辐射DSSC时电子从导带传至FTO玻璃基材的距离短,从而产生高的开路电压和短路电流,而电解质中的空穴需从还原处传至对电极,传输路线交长使填充因子(FF)较低[8]
因此,用NiSe2@NCF组装的电池正面辐射时VOC值(0.89 V)和JSC值(13.46 mA?cm-2)较高,FF(68.56)较低,而从背面辐射时VOC、JSC和FF分别为0.87 V、9.73 mA?cm-2、71.72
对电极的透明度,是背面辐射DSSC时影响太阳光入射和染料激发量的关键因素[8]
浅黄色的Ni-TCPP和Fe-TCPP薄膜在管式炉中原位硒化后分别变成了浅灰色的NiSe2@NCF和FeSe2@NCF,如图4c所示
图4c内插图给出了M-TCPP薄膜和MS2@NCF的光学照片,第一排依次分别为Ni-TCPP和Fe-TCPP薄膜,而第二排依次分别为NiSe2@NCF和FeSe2@NCF
可以看出,M-TCPP薄膜和MS2@NCF具有很高的透明性
从背面辐射电池时,影响其PCE的另一个关键因素是电解质[9],图4d表明钴电解质对光的吸收性明显低于碘电解质
从背面辐射DSSC时入射光必须穿过FTO玻璃基材、MSe2@NCF材料和钴电解质才能达到Y123染料处使其激发,因此与正面辐射相比从背面辐射的太阳光利用率稍小,其PCE值低于正面辐射的PCE值
而从图4a、b和表1可知,二者的PCE值差距较小
这可归因于MSe2@NCF的高透光性和钴电解质的弱吸收性
2.3 MSe2@NCF的电化学性能
DSSC的FF与对电极的串联电阻呈现相反的趋势,而对电极的串联电阻与对电极催化材料的电阻、电解质的离子扩散阻抗以及导电基材的本征电阻有关[18]
为了深入研究MSe2@NCF作为DSSC对电极材料的催化活性并排除光阳极的影响,用电化学阻抗、塔菲尔极化曲线对三种对电极材料的电化学性能进行了表征
NiSe2@NCF、FeSe2@NCF和Pt电极组装的对称电池的交流阻抗谱如图5所示,用Z’man软件拟合交流阻抗谱所获得的详细参数列于表2
交流阻抗谱图高频区实轴上的截距为串联电阻(Rs)[29],代表对电极材料与导电基材的粘结强度
所有的对电极材料都显示出近似的Rs值,说明Rs值对DSSC的光伏性能影响较小
交流阻抗谱的左边半圆代表对电极界面与电解质的电荷传输阻抗(Rct)[30]
从图5可见,三种对电极材料的Rct值大小的排序为:FeSe2@NCF(5.54 Ω·cm2)>NiSe2@NCF(4.81Ω·cm2)>Pt(3.85Ω·cm2),说明其对I3-还原的催化活性的关系为:Pt>NiSe2@NCF>FeSe2@NCF
这个规律,与所测的光电转化效率结果一致
交流阻抗谱的右边半圆代表钴电解质的能斯特扩散阻抗[31]
从图5可见,MSe2@NCF的ZN值与Pt电极的ZN值相似,表明在MSe2@NCF组装的对称电池和Pt组装的对称电池中,钴电解质的离子扩散速度相近
图5
图5用不同对电极组装的对称电池的交流阻抗谱
Fig.5Nyquist plots of symmetrical cells with various CEs
Table 2
表2
表2不同对电极的EIS参数
Table 2EIS parameters of DSSC with various CEs
CE
|
Rs/Ω·cm2
|
Rct /Ω·cm2
|
ZN /Ω·cm2
|
Pt
|
17.86
|
3.85
|
3.14
|
NiSe2@NCF
|
17.53
|
4.81
|
3.37
|
FeSe2@NCF
|
17.95
|
5.54
|
3.48
|
根据塔菲尔极化曲线进一步探讨了MSe2@NCF对电极材料的催化能力,如图6所示
从图6可见,NiSe2@NCF的阳极(或阴极)分支斜率与Pt电极的阳极(或阴极)分支斜率相近,表明NiSe2@NCF具有与Pt相近的交换电流密度(Jo)和催化活性[32]
Y轴的截距为极限扩散电流密度(Jlim),代表对电极与电解质界面的离子扩散速率[33]
从图6可见,三种对电极材料的Jlim值为同一个数量级且差距较小,说明用三种对电极材料组装的DSSC其离子扩散系数值(D)相近,与EIS关于ZN值的测试结果一致
图6
图6用不同对电极组装的对称电池的塔菲尔极化曲线
Fig.6Tafel curves of symmetrical cells fabricated with various CEs
3 结论
用层层自组装法制备M-TCPP薄膜,以其为牺牲模板和硒粉一起置于惰性氛围中煅烧制备出MSe2和氮掺杂的透明碳膜(MSe2@NCF),再将MSe2@NCF用作对电极并结合钴电解质的特点可制备性能优异的双面DSSC
从正面和背面辐射DSSC时电池电荷传输路线和光伏性能不同
NiSe2@NCF具有可与Pt相媲美的催化活性,用其组装的双面DSSC从正面辐射和背面辐射的PCE分别为8.19%和6.02%,与用Pt电极组装的DSSC的PCE (8.46%和6.23%)接近
参考文献
View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子
[1]
Ahmad M S, Pandey A K, Rahim N A.
Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review
[J]. Renew. Sust. Energ. Rev., 2017, 77: 89
[本文引用: 1]
[2]
Sugathan V, John E, Sudhakar K.
Recent improvements in dye sensitized solar cells: A review
[J]. Renew. Sust. Energ. Rev., 2015, 52: 54
[本文引用: 1]
[3]
Chen M, Shao L L.
Review on the recent progress of carbon counter electrodes for dye-sensitized solar cells
[J]. Chem. Eng. J., 2016, 304: 629
[本文引用: 1]
[4]
Meyer E, Bede A, Zingwe N, et al.
Metal sulphides and their carbon supported composites as Platinum-free counter electrodes in dye-sensitized solar cells: a review
[J]. Materials, 2019, 12: 1980
[本文引用: 1]
[5]
Ponken T, Tagsin K, Suwannakhun C, et al.
Preparation of platinum (Pt) Counter electrode coated by electrochemical technique at high temperature for dye-sensitized solar cell (DSSC) application
[J]. J. Phys., 2017, 901: 012084
[本文引用: 1]
[6]
Ou J H, Xiang J, Liu J X, et al.
Surface-supported metal-organic framework thin-film-derived transparent CoS1.097@ N-doped carbon film as an efficient counter electrode for bifacial dye-sensitized solar cells
[J]. ACS Appl. Mater. Interfaces, 2019, 11: 14862
[本文引用: 2]
[7]
Duan Y Y, Tang Q W, He B L, et al.
Transparent nickel selenide alloy counter electrodes for bifacial dye-sensitized solar cells exceeding 10% efficiency
[J]. Nanoscale, 2014, 6: 12601
DOIURLPMID [本文引用: 1] " />
Dye-sensitized solar cell (DSSC) is a promising solution to global energy and environmental problems because of its clean, low-cost, high efficiency, good durability, and easy fabrication. However, enhancing the efficiency of the DSSC still is an important issue. Here we devise a bifacial DSSC based on a transparent polyaniline (PANI) counter electrode (CE). Owing to the sunlight irradiation simultaneously from the front and the rear sides, more dye molecules are excited and more carriers are generated, which results in the enhancement of short-circuit current density and therefore overall conversion efficiency. The photoelectric properties of PANI can be improved by modifying with 4-aminothiophenol (4-ATP). The bifacial DSSC with 4-ATP/PANI CE achieves a light-to-electric energy conversion efficiency of 8.35%, which is increased by ~24.6% compared to the DSSC irradiated from the front only. This new concept along with promising results provides a new approach for enhancing the photovoltaic performances of solar cells.
[14]
Xu S J, Luo Y F, Liu G W, et al.
Bifacial dye-sensitized solar cells using highly transparent PEDOT: PSS films as counter electrodes
[J]. Electrochim. Acta, 2015, 156: 20
[本文引用: 1]
[15]
Kim C K, Ji J M, Zhou H R, et al.
Tellurium-doped, mesoporous carbon nanomaterials as transparent metal-free counter electrodes for high-performance bifacial dye-sensitized solar cells
[J]. Nanomaterials, 2020, 10: 29
[本文引用: 1]
[16]
Yun S N, Liu Y F, Zhang T H, et al.
Recent advances in alternative counter electrode materials for Co-mediated dye-sensitized solar cells
[J]. Nanoscale, 2015, 7: 11877
URLPMID [本文引用: 1]
[17]
Kavan L, Yum J H, Graetzel M.
Optically transparent cathode for Co(III/II) mediated dye-sensitized solar cells based on graphene oxide
[J]. ACS Appl. Mater. Interfaces, 2012, 4: 6999
DOIURLPMID [本文引用: 1] " />
We present herein a facile one-step low-temperature hydrothermal approach for in situ growth of metal selenides (Co(0.85)Se and Ni(0.85)Se) on conductive glass substrates. The as-prepared metal selenides on conductive substrates can be used directly as transparent counter electrodes for dye-sensitized solar cells (DSSCs) without any post-treatments. It is found that graphene-like Co(0.85)Se exhibits higher electrocatalytic activity than Pt for the reduction of triiodide. As a consequence, the DSSC with Co(0.85)Se generates higher short-circuit photocurrent and power conversion efficiency (9.40%) than that with Pt.
[21]
Hezam A, Namratha K, Drmosh Q A, et al.
Electronically semitransparent ZnO nanorods with superior electron transport ability for DSSCs and solar photocatalysis
[J]. Ceram. Int., 2018, 44: 7202
[本文引用: 1]
[22]
Han C L, Wang J, Gong Y T, et al.
Nitrogen-doped hollow carbon hemispheres as efficient metal-free electrocatalysts for oxygen reduction reaction in alkaline medium
[J]. J. Mater. Chem., 2014, 2A: 605
[本文引用: 1]
[23]
Ma X, Zhang L, Xu G C, et al.
Facile synthesis of NiS hierarchical hollow cubes via Ni formate frameworks for high performance supercapacitors
[J]. Chem. Eng. J., 2017, 320: 22
[24]
Du Y S, Cheng G Z, Luo W.
NiSe2/FeSe2 nanodendrites: a highly efficient electrocatalyst for oxygen evolution reaction
[J]. Catal. Sci. Technol., 2017, 7: 4604
[本文引用: 1]
[25]
Xu H J, Wang B K, Shan C F, et al.
Ce-doped NiFe-layered double hydroxide ultrathin nanosheets/nanocarbon hierarchical nanocomposite as an efficient oxygen evolution catalyst
[J]. ACS Appl. Mater. Interfaces, 2018, 10: 6336
DOIURLPMID [本文引用: 1] " />
In this communication, we report that a Co-doped NiSe2 nanoparticles film electrodeposited on a conductive Ti plate (Co0.13Ni0.87Se2/Ti) behaves as a robust electrocatalyst for both HER and OER in strongly basic media, with good activity over a NiSe2/Ti counterpart. This Co0.13Ni0.87Se2/Ti catalytic electrode delivers 10 mA cm(-2) at an overpotential of 64 mV for HER and 100 mA cm(-2) at an overpotential of 320 mV for OER in 1.0 M KOH. A voltage of only 1.62 V is required to drive 10 mA cm(-2) for the two-electrode alkaline water electrolyzer using Co0.13Ni0.87Se2/Ti as an anode and cathode.
[28]
Li D J, Maiti U N, Lim J, et al.
Molybdenum sulfide/N-doped CNT forest hybrid catalysts for high-performance hydrogen evolution reaction
[J]. Nano Lett., 2014, 14: 1228
DOIURLPMID [本文引用: 1] class="outline_tb" " />
In the current work, we report a series of bifacial dye-sensitized solar cells (DSSCs) that provide power conversion efficiencies of more than 10% from bifacial irradiation. The device comprises an N719-sensitized TiO2 anode, a transparent nickel selenide (Ni-Se) alloy counter electrode (CE), and liquid electrolyte containing I(-)/I3(-) redox couples. Because of the high optical transparency, electron conduction ability, electrocatalytic activity of Ni-Se CEs, as well as dye illumination, electron excitation and power conversion efficiency have been remarkably enhanced. Results indicate that incident light from a transparent CE has a compensation effect to the light from the anode. The impressive efficiency along with simple preparation of the cost-effective Ni-Se alloy CEs highlights the potential application of bifacial illumination technique in robust DSSCs.
[8]
Ito S, Zakeeruddin S M, Comte P, et al.
Bifacial dye-sensitized solar cells based on an ionic liquid electrolyte
[J]. Nat. Photon., 2008, 2: 693
[本文引用: 4]
[9]
Bisquert J.
Photovoltaics: the two sides of solar energy
[J]. Nat. Photon., 2008, 2: 648
[本文引用: 2]
[10]
Fu Y P, Lv Z B, Hou S C, et al.
TCO‐free, flexible, and bifacial dye‐sensitized solar cell based on low‐cost metal wires
[J]. Adv. Energy Mater., 2012, 2: 37
[11]
Duan Y Y, Tang Q W, He B L, et al.
Bifacial dye-sensitized solar cells with transparent cobalt selenide alloy counter electrodes
[J]. J. Power Sour., 2015, 284: 349
[12]
Ou J H, Liang J, Xiang J, et al.
Highly transparent nickel and iron sulfide on nitrogen-doped carbon films as counter electrodes for bifacial quantum dot sensitized solar cells
[J]. Sol. Energy, 2019, 193: 766
[13]
Wu J H, Li Y, Tang Q W, et al.
Bifacial dye-sensitized solar cells: A strategy to enhance overall efficiency based on transparent polyaniline electrode
[J]. Sci. Rep., 2014, 4: 4028
PMID " />
Thin semitransparent films were fabricated on F-doped SnO(2) (FTO) from single-layer graphene oxide (GO) either pure or in a composite with graphene nanoplatelets. Electrocatalytic activity of prepared films was tested for the Co(bpy)(3)(3+/2+) redox couple in acetonitrile electrolyte solution. Pristine GO showed almost no activity, resembling the properties of basal plane pyrolytic graphite. However, electrochemical performance of graphene oxide improved dramatically upon chemical reduction with hydrazine and/or heat treatment. All GO-containing films were firmly bonded to FTO, which contrasted with the poor adhesion of sole graphene nanoplatelets to this support. The activity loss during long-term aging was considerably improved, too. Enhanced stability of GO-containing films together with high electrocatalytic activity is beneficial for application in a new generation of dye-sensitized solar cells employing Co(bpy)(3)(3+/2+) as the redox shuttle.
[18]
Gao C J, Han Q J, Wu M X.
Review on transition metal compounds based counter electrode for dye-sensitized solar cells
[J]. J. Energy Chem., 2018, 27: 703
[本文引用: 2]
[19]
Ou J H, Gong C H, Wang M, et al.
Highly efficient ZIF-8/graphene oxide derived N-doped carbon sheets as counter electrode for dye-sensitized solar cells
[J]. Electrochim. Acta, 2018, 286: 212
[20]
Gong F, Wang H, Xu X, et al.
In situ growth of Co0.85Se and Ni0.85Se on conductive substrates as high-performance counter electrodes for dye-sensitized solar cells
[J]. J. Am. Chem. Soc., 2012, 134: 10953
PMID " />
Developing convenient doping to build highly active oxygen evolution reaction (OER) electrocatalysts is a practical process for solving the energy crisis. Herein, a facile and low-cost in situ self-assembly strategy for preparing a Ce-doped NiFe-LDH nanosheets/nanocarbon (denoted as NiFeCe-LDH/CNT, LDH = layered double hydroxide and CNT = carbon nanotube) hierarchical nanocomposite is established for enhanced OER, in which the novel material provides its overall advantageous structural features, including high intrinsic catalytic activity, rich redox properties, high, flexible coordination number of Ce(3+), and strongly coupled interface. Further experimental results indicate that doped Ce into NiFe-LDH/CNT nanoarrays brings about the reinforced specific surface area, electrochemical surface area, lattice defects, and the electron transport between the LDH nanolayered structure and the framework of CNTs. The effective synergy prompts the NiFeCe-LDH/CNT nanocomposite to possess superior OER electrocatalytic activity with a low onset potential (227 mV) and Tafel slope (33 mV dec(-1)), better than the most non-noble metal-based OER electrocatalysts reported. Therefore, the combination of the remarkable catalytic ability and the facile normal temperature synthesis conditions endows the Ce-doped LDH nanocomposite as a promising catalyst to expand the field of lanthanide-doped layered materials for efficient water-splitting electrocatalysis with scale-up potential.
[26]
Chen T, Li S Z, Wen J, et al.
Rational construction of hollow core‐branch CoSe2 nanoarrays for high‐performance asymmetric supercapacitor and efficient oxygen evolution
[J]. Small, 2018, 14: 1700979
[27]
Liu T T, Asiri A M, Sun X P.
Electrodeposited Co-doped NiSe2 nanoparticles film: a good electrocatalyst for efficient water splitting
[J]. Nanoscale, 2016, 8: 3911
PMID " />
Cost effective hydrogen evolution reaction (HER) catalyst without using precious metallic elements is a crucial demand for environment-benign energy production. Molybdenum sulfide is one of the promising candidates for such purpose, particularly in acidic condition, but its catalytic performance is inherently limited by the sparse catalytic edge sites and poor electrical conductivity. We report synthesis and HER catalysis of hybrid catalysts composed of amorphous molybdenum sulfide (MoSx) layer directly bound at vertical N-doped carbon nanotube (NCNT) forest surface. Owing to the high wettability of N-doped graphitic surface and electrostatic attraction between thiomolybdate precursor anion and N-doped sites, approximately 2 nm scale thick amorphous MoSx layers are specifically deposited at NCNT surface under low-temperature wet chemical process. The synergistic effect from the dense catalytic sites at amorphous MoSx surface and fluent charge transport along NCNT forest attains the excellent HER catalysis with onset overpotential as low as approximately 75 mV and small potential of 110 mV for 10 mA/cm(2) current density, which is the highest HER activity of molybdenum sulfide-based catalyst ever reported thus far.
[29]
Gong J W, Sumathy K, Qiao Q Q, et al.
Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends
[J]. Renew. Sust. Energ. Rev., 2017, 68: 234
[30]
Gunasekera S S B, Perera I R, Gunathilaka S S.
Conducting polymers as cost effective counter electrode material in dye-sensitized solar cells
[A]. Solar Energy [C]. Singapore: Springe, 2020: 345
[31]
Silambarasan K, Archana J, Athithya S, et al.
Hierarchical NiO@NiS@ graphene nanocomposite as a sustainable counter electrode for Pt free dye-sensitized solar cell
[J]. Appl. Surf. Sci., 2020, 501: 144010
[32]
Ou J H, Gong C H, Xiang J, et al.
Noble metal-free Co@N-doped carbon nanotubes as efficient counter electrode in dye-sensitized solar cells
[J]. Sol. Energy, 2018, 174: 225
[33]
Makhlouf M M, Abdulkarim S, Adam M S S, et al.
Unraveling urea pre-treatment correlated to activate Er2(WO4)3 as an efficient and stable counter electrode for dye-sensitized solar cells
[J]. Electrochim. Acta, 2020, 333: 135540
Advancements in the development of TiO2 photoanodes and its fabrication methods for dye sensitized solar cell (DSSC) applications. A review
1
2017
声明:
“透明MSe2@氮掺杂碳膜对电极用于钴电解质双面DSSC” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)