合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 功能材料技术

> A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法

A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法

968   编辑:中冶有色技术网   来源:西北工业大学  
2023-12-06 15:24:47
权利要求书: 1.一种A位高熵钙钛矿氧化物热电陶瓷,其特征在于:所述A位高熵钙钛矿氧化物的化学组成式为(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25La0.25)TiO3、(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3、(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3或(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3。

2.一种制备权利要求1所述A位高熵钙钛矿氧化物热电陶瓷的方法,其特征在于,具体过程是:

步骤1,配料:

按照(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3或(Ca0.25Sr0.25Ba0.25Me0.25)TiO3,其中Me=La、Pb、Nd或Sm化学式的化学计量比称量原料,所述原料是:La2O3、PbO、Nd2O3、Sm2O3、CaCO3、SrCO3、BaCO3和TiO2;

步骤2,球磨:

将称量的原料置于聚四氟乙烯球磨罐中加入研磨球进行球磨,加入80g的ZrO2研磨球,并加入40g无水乙醇,放置于行星球磨机内,以300rpm的转速进行混合湿磨12h,将得到的混合物在50℃烘干12h,得到混合粉料;

步骤3,预烧:

将得到的混合粉料置于陶瓷坩埚中,以5℃/min的速率升温升至1100℃~1350℃并保温时间4h,进行预烧;保温结束后,以5℃/min速率降温至500℃后随炉冷却至室温,得到预合成粉体;

步骤4,造粒压片:

对得到的所述预合成粉体过筛;将过筛后的微粒置于压片机中,在3MPa下压片得到陶瓷坯体;

步骤5,排胶:

将得到的陶瓷坯体置于氧化铝坩埚中并放于箱式炉内升温排胶,得到排胶后的陶瓷素坯体;

步骤6,烧结:

将得到的陶瓷素坯体置于氧化铝坩埚中,放入管式炉内进行烧结;

步骤7,还原退火:

将得到的陶瓷置于氧化铝方舟中,放入管式炉内以5℃/min的速率升温至1150℃~

1400℃,保温时间8h,对所述陶瓷进行氩气加碳粉还原退火,氩气流量为20~150ml/min;保温结束后,以5℃/min的速率降温至500℃后随炉冷却至室温;得到A位高熵钙钛矿氧化物。

3.如权利要求2所述制备A位高熵钙钛矿氧化物热电陶瓷的方法,其特征在于,所述对预合成粉体过筛时,得到的预合成粉体中加入浓度为8wt.%的PA水溶液;每10g预合成粉体中加入1.8~2.1gPA水溶液;混合均匀后过筛,取100目~200目之间的微粒。

4.如权利要求2所述制备A位高熵钙钛矿氧化物热电陶瓷的方法,其特征在于,排胶时,对该陶瓷坯体以2℃/min的升温速度加热到650℃排胶,保温3h后随炉冷却至室温。

5.如权利要求2所述制备A位高熵钙钛矿氧化物热电陶瓷的方法,其特征在于,所述烧结时,以5℃/min的升温速度加热到1200℃~1450℃,保温2h进行烧结;保温结束后,以5℃/min的速率降温至500℃,随炉冷却至室温后取出,打磨抛光。

说明书: 一种A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法技术领域[0001] 本发明涉及高熵氧化物领域,具体涉及一种A位高熵氧化物MeTiO3热电陶瓷及其制备方法。

背景技术[0002] 2004年“高熵合金”(HEAs)的概念被提出,Cantor等首次制备了构型熵稳定的单相多组分合金,此后,高熵工程在合金领域得到了广泛的研究。直到2015年,熵稳定氧化物(Mg0.2Zn0.2Co0.2Cu0.2Zn0.2)O被报道后,高熵概念步入陶瓷领域。这不仅证实了熵的驱动力,也为高熵非金属材料的研究开辟了新的思路。高熵体系通常具有四大高熵效应:在热力学上为高熵效应;在动力学上为迟滞扩散效应;在结构上为晶格畸变效应;在性能上为鸡尾酒效应。通过合理的配方设计,可以获得高强度、高硬度、巨介电常数、耐高温氧化及低热导率的高熵材料,因此,高熵陶瓷成为新材料领域的研究热点,研究人员努力合成不同的高熵陶瓷,并探索它们的优异性能。[0003] 高熵陶瓷(HECs),也被称为高熵化合物,是一种不少于四种阳离子或阴离子的单相陶瓷。相比于对高熵合金的深入研究,高熵陶瓷属于刚刚起步,与高熵合金相似,高熵陶瓷由单相多组分元素组成,其大的构型熵有助于单相固溶体形成。与高熵合金不同的是,高熵陶瓷通常是具有带隙的半导体或绝缘体,这使得它们有可能成为潜在的功能材料。例如,高熵铜基化合物由于具有较大的塞贝克系数和较低的热导率,可以成为好的热电材料。高熵陶瓷的另一个优势是它们具有充足的结构多样性,高熵陶瓷材料家族的成员正在迅速增加。近年来,研究人员将高熵陶瓷家族成员扩展到二硼化物,硫系化合物,硅化物,金属间化合物如半?赫斯勒化合物等体系,包括立方结构、六方结构、层状结构、岩盐结构、钙钛矿结构等八个结构类型的高熵陶瓷材料被研究,涵盖从结构到功能的应用。但是,目前钙钛矿结构高熵氧化物陶瓷尚属于研究起步阶段。[0004] 在公开号为CN110255610A的发明创造中公开了一种A位高熵钙钛矿氧化物及其制备方法和应用。该发明创造公开的A位高熵钙钛矿氧化物的通式为[(Bi,Na)1/5(La,Li)1/5(Ce,K)1/5Ca1/5Sr1/5]TiO3。该发明中采用固相反应法得到单相钙钛矿高熵氧化物,具有电池特性,但不具有热电性能。

[0005] 在公开号为CN109650876A的发明创造中公开了《一种A位高熵钙钛矿氧化物及其制备方法》,该发明创造公开的A位高熵钙钛矿氧化物的化学组成通式为

(La0.2Li0.2Ba0.2Sr0.2Ca0.2)TiO3。该发明中采用固相反应法得到单相钙钛矿结构高熵氧化物,但未对潜在的物理性能进行研究,缺乏应用领域定位,同时尚未知是否具有热电性能。

[0006] 在公开号为CN109650876A的发明创造中公开了《一种高功率密度的Sn掺杂高熵钙钛矿氧化物陶瓷材料及其制备方法》,该发明创造公开的A位高熵钙钛矿氧化物的化学组成通式为(Na0.2Bi0.2Ba0.2Sr0.2Ca0.2)Ti1?xSnxO3。该发明中采用固相反应法结合冷等静压工艺制备高熵钙钛矿氧化物陶瓷材料,其具有储能性能,是一种新的无铅储能材料基体,但是不具有热电性能。[0007] 在公开号为CN109607615A的发明创造中公开了《一种B位高熵钙钛矿氧化物及其制备方法》,该发明创造公开的B位高熵钙钛矿氧化物为Ba(Zr1/6Sn1/6Ti1/6Hf1/6Nb1/6Ga1/6)O3。该发明中采用固相反应法制备高熵钙钛矿氧化物,只表征物相组成和微观组织形貌,但未对物理性能进行研究。

[0008] 在DOI:10.1016/j.ceramint.2019.11.239中,ShiyuZhou等公开发表了《Microstructure and dielectric propertiesof high entropy Ba

(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3perovskiteoxides》的论文。在该论文中,采用固相反应法制

3+ 5+ 5+ 5+ 6+ 6

备一系列高熵钙钛矿氧化物Ba(Zr0.2Ti0.2Sn0.2Hf0.2Me0.2)O3(Me=Y ,Nb ,Ta , ,Mo ,W+

),并对其介电性能进行研究,但是该高熵钙钛矿氧化物不具有热电性能,不能应用于热电材料领域。

[0009] 目前尚未见到用CaCO3、SrCO3、BaCO3、La2O3、PbO、Nd2O3、Sm2O3、Eu2O3和TiO2制备高熵钙钛矿结构氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25Me0.25)TiO3(Me=La,Pb,Nd,Sm,Eu)材料及其热电性能的报道。发明内容[0010] 为克服现有技术中存在的钛酸锶基热电材料热导率较高的不足,本发明提出了一种A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法。[0011] 所述A位高熵钙钛矿氧化物的化学组成式为(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25La0.25)TiO3、(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3、(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3、(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3、(Ca0.25Sr0.25Ba0.25Eu0.25)TiO3。[0012] 制备所述A位高熵钙钛矿氧化物MeTiO3热电陶瓷的具体过程是:[0013] 步骤1,配料[0014] 按照(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3或(Ca0.25Sr0.25Ba0.25Me0.25)TiO3,其中Me=La/Pb/Nd/Sm/Eu化学式的化学计量比准确称量原料CaCO3、SrCO3、BaCO3、La2O3、PbO、Nd2O3、Sm2O3、Eu2O3和TiO2。[0015] 步骤2,球磨:[0016] 在步骤1称量好的初始原料置于聚四氟乙烯球磨罐中,加入80g的ZrO2研磨球,并加入40g无水乙醇,放置于行星球磨机内,以300rpm的转速进行混合湿磨12h,将得到的混合物在50℃烘干12h,得到混合粉料。[0017] 步骤3,预烧:[0018] 将得到的混合粉料置于陶瓷坩埚中。以5℃/min的速率升温升至1100℃?1350℃并保温时间4h,进行预烧。保温结束后,以5℃/min速率降温至500℃后随炉冷却至室温,得到预合成粉体。[0019] 步骤4,造粒压片:[0020] 在得到的预合成粉体中加入浓度为8wt.%的PA水溶液;每10g预合成粉体中加入2.0gPA水溶液。混合均匀后过筛,取100目~200目之间的微粒。将过筛后的微粒置于压片机中,在3MPa下压片得到陶瓷坯体。

[0021] 步骤5,排胶:[0022] 将得到的陶瓷坯体置于氧化铝坩埚中并放于箱式炉内。对该陶瓷坯体以2℃/min的升温速度加热到650℃排胶,保温3h。保温结束后随炉冷却至室温,得到排胶后的陶瓷素坯体。

[0023] 步骤6,烧结:[0024] 将得到的陶瓷素坯体置于氧化铝坩埚中,放入管式炉内以5℃/min的升温速度加热到1200℃?1450℃,保温2h进行烧结。保温结束后,以5℃/min的速率降温至500℃,随炉冷却至室温后取出,打磨抛光。

[0025] 步骤7,还原退火:[0026] 将得到的陶瓷置于氧化铝方舟中,放入管式炉内以5℃/min的速率升温至1150℃?1400℃,保温时间8h,对所述陶瓷进行氩气加碳粉还原退火,氩气流量为20?50ml/min。保温结束后,以5℃/min的速率降温至500℃后随炉冷却至室温。得到A位高熵钙钛矿氧化物。

[0027] 本领域中,高熵氧化物的物相结构确定方法为:[0028] 采用X射线衍射(XRD)进行高熵氧化物物相分析;采用的仪器是荷兰分析仪器公司X’PertPRO衍射仪,其扫描角度范围:2θ=20?90°,扫描速度为5°/min,步长为0.01°,得到的粉末衍射结果如图1和图2所示。[0029] 所述高熵氧化物的微观形貌和元素分布的确定方法为:[0030] 采用美国FEI公司的聚焦离子/电子双束电镜(FIB:HeliosG4CX)观测A位高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3陶瓷样品断面的微观形貌。采用Thermofisher公司的电制冷能谱仪(Energydispersivespectrometer,缩写EDS:ThermoNS7)对电镜所观测区域中可能存在的各种元素的分布状态进行测试,如图3所示。从图3可以看出本发明所述的A位高熵钙钛矿氧化物结构致密、晶粒完整、元素分布均匀。

[0031] 所述高熵氧化物的热电性能测试的确定方法为:[0032] 将高熵钙钛矿氧化物制成18×4×4mm方柱,采用德国林赛斯(LINSEIS)公司LSR?3/1100型塞贝克系数测试仪,测试出样品的塞贝克系数,结果如图4所示。图4结果表明该A位高熵钙钛矿氧化物陶瓷具有热电性能,可以用作n型热电材料。

[0033] 本发明得到了用CaCO3、SrCO3、BaCO3、La2O3、PbO、Nd2O3、Sm2O3、Eu2O3和TiO2制备高熵钙钛矿结构氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25Me0.25)TiO3(Me=La,Pb,Nd,Sm,Eu)材料。[0034] 与现有技术相比较,本发明取得的有益效果为:[0035] 本发明制得的A位高熵钙钛矿氧化物MeTiO3的化学组成分别为:(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25La0.25)TiO3、(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3、(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3、(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3、(Ca0.25Sr0.25Ba0.25Eu0.25)TiO3。

所述A位高熵钙钛矿氧化物MeTiO3具有单相钙钛矿结构,内部各元素均匀分布,无团聚现象,且具有热电性能,可用于热电材料领域。附图1和附图2展示了本发明工艺所得A位高熵钙钛矿氧化物的物相组成为单相钙钛矿结构,不存在第二相。附图3展示了本发明工艺所得A位高熵钙钛矿氧化物MeTiO3陶瓷微观结构的扫描电镜照片,从图中可以看出,陶瓷内部晶粒完整,结构致密,样品微结构中未观察到明显的气孔,晶粒尺寸约1.5~2μm。同时附图3展示了陶瓷中A位五个元素Ca,Sr,Ba,La,Pb在陶瓷内部均匀分布,无团聚现象。附图4展示了本发明所制备的A位高熵钙钛矿氧化物MeTiO3具有热电性能,塞贝克系数最高可达272μ/K,在热电材料领域具有良好的应用前景。本发明的技术原理包括:1.设计原料配比,实现钙钛矿结构高熵化,提高材料组成中原子排列的混乱度,增加声子散射,降低热导率,进而提高热电性能。2.优化烧结工艺,采用氩气气氛保护烧结,使烧结过程中,氧原子可借由材料晶格中的氧空位迁移排出,从而减小气孔率,提高陶瓷密度的同时,提高氧空位浓度,提高材料的载流子浓度。3.设计还原退火工艺,采用氩气加碳粉的还原退火处理过程,实现钙钛矿氧化物半导化,提高陶瓷的载流子浓度,提高电导率,进而提高热电性能。

附图说明[0036] 图1为本发明的由CaCO3、SrCO3、BaCO3、La2O3、PbO、TiO2所制成A位高熵钙钛矿氧化物的X射线衍射图谱。[0037] 图2为本发明的由CaCO3、SrCO3、BaCO3、Nd2O3、Sm2O3、Eu2O3、TiO2制成所制成A位高熵钙钛矿氧化物的X射线衍射图谱。[0038] 图3a为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的微观组织形貌图。[0039] 图3b为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的中Ca元素分布图。[0040] 图3c为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的中Sr元素分布图。[0041] 图3d为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的中Ba元素分布图。[0042] 图3e为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的中La元素分布图。[0043] 图3f为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的中Pb元素分布图。[0044] 图4为本发明实施例1高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的塞贝克系数曲线。[0045] 图5为本发明的流程图。[0046] 图中:[0047] 1为(Ca0.25Sr0.25Ba0.25La0.25)TiO3的X射线衍射图谱;[0048] 2为(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3的X射线衍射图谱;[0049] 3为(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3的X射线衍射图谱;[0050] 4为SrTiO3的标准卡片,PDF#84?0444的X射线衍射图谱;[0051] 5为(Ca0.25Sr0.25Ba0.25Eu0.25)TiO3的X射线衍射图谱;[0052] 6为(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3的X射线衍射图谱;[0053] 7为(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3的X射线衍射图谱;[0054] 8为SrTiO3的标准卡片,PDF#84?0444;[0055] 9为退火温度1150℃的塞贝克系数曲线;[0056] 10为退火温度1200℃的塞贝克系数曲线;[0057] 11为退火温度1300℃的塞贝克系数曲线。具体实施方式[0058] 本发明是一种A位高熵钙钛矿氧化物,通过实施例详细描述其技术特征。[0059] 所述A位高熵钙钛矿氧化物的化学组成式为(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25La0.25)TiO3、(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3、(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3、(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3、(Ca0.25Sr0.25Ba0.25Eu0.25)TiO3。[0060] 表1各实施例的化学组成式[0061]实施例 化学组成式

1 (Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3

2 (Ca0.25Sr0.25Ba0.25La0.25)TiO3

3 (Ca0.25Sr0.25Ba0.25Pb0.25)TiO3

4 (Ca0.25Sr0.25Ba0.25Nd0.25)TiO3

5 (Ca0.25Sr0.25Ba0.25Sm0.25)TiO3

6 (Ca0.25Sr0.25Ba0.25Eu0.25)TiO3

[0062] 各实施例中所用试剂均为市售产品;分析纯。[0063] 本发明还提出了一种所述A位高熵钙钛矿氧化物(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3、(Ca0.25Sr0.25Ba0.25La0.25)TiO3、(Ca0.25Sr0.25Ba0.25Pb0.25)TiO3、(Ca0.25Sr0.25Ba0.25Nd0.25)TiO3、(Ca0.25Sr0.25Ba0.25Sm0.25)TiO3和(Ca0.25Sr0.25Ba0.25Eu0.25)TiO3的制备方法,具体过程是:[0064] 步骤1,配料[0065] 按照(Ca0.2Sr0.2Ba0.2La0.2Pb0.2)TiO3或(Ca0.25Sr0.25Ba0.25Me0.25)TiO3,其中Me=La/Pb/Nd/Sm/Eu化学式的化学计量比准确称量原料CaCO3、SrCO3、BaCO3、La2O3、PbO、Nd2O3、Sm2O3、Eu2O3和TiO2;其中,具体详见表2.[0066] 其中,具体CaCO3为3.2g、SrCO3为4.7g、BaCO3为6.4g、La2O3为5.2g、PbO为7.2g、TiO2为12.9g。[0067] 表2各实施例的原料用量,单位均为g。[0068][0069] 步骤2,球磨:[0070] 在步骤1称量好的初始原料置于聚四氟乙烯球磨罐中,加入80g的ZrO2研磨球,并加入40g无水乙醇,放置于行星球磨机内,以300rpm的转速进行混合湿磨12h,将得到的混合物在50℃烘干12h,得到混合粉料。[0071] 步骤3,预烧:[0072] 将得到的混合粉料置于陶瓷坩埚中。以5℃/min的速率升温升至1100℃?1350℃并保温时间4h,进行预烧。保温结束后,以5℃/min速率降温至500℃后随炉冷却至室温,得到预合成粉体。[0073] 步骤4,造粒压片:[0074] 在得到的预合成粉体中加入浓度为8wt.%的PA水溶液;每10g预合成粉体中加入2.0gPA水溶液。混合均匀后过筛,取100目~200目之间的微粒。将过筛后的微粒置于压片机中,在3MPa下压片得到陶瓷坯体。

[0075] 步骤5,排胶:[0076] 将得到的陶瓷坯体置于氧化铝坩埚中并放于箱式炉内。对该陶瓷坯体以2℃/min的升温速度加热到650℃排胶,保温3h。保温结束后随炉冷却至室温,得到排胶后的陶瓷素坯体。

[0077] 步骤6,烧结:[0078] 将得到的陶瓷素坯体置于氧化铝坩埚中,放入管式炉内以5℃/min的升温速度加热到1200℃?1450℃,保温2h进行烧结。保温结束后,以5℃/min的速率降温至500℃,随炉冷却至室温后取出,打磨抛光。

[0079] 步骤7,还原退火:[0080] 将得到的陶瓷置于氧化铝方舟中,放入管式炉内以5℃/min的速率升温至1150℃?1400℃,保温时间8h,对所述陶瓷进行氩气加碳粉还原退火,氩气流量为20?50ml/min。保温结束后,以5℃/min的速率降温至500℃后随炉冷却至室温。得到A位高熵钙钛矿氧化物。

[0081] 各所述实施例的制备过程相同。不同之处在于工艺参数。[0082] 表3各实施例的工艺参数[0083][0084]



声明:
“A位高熵钙钛矿氧化物MeTiO3热电陶瓷及其制备方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记