合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 加工技术

> 氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法

氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法

1008   编辑:中冶有色技术网   来源:江苏大学  
2023-11-30 13:58:54
权利要求书: 1.一种氧化铝/镧系钙钛矿陶瓷复合光吸收体,其特征在于,所述光吸收体的基体材质为镧系钙钛矿陶瓷材料,第一和第七层为致密LaMnO3陶瓷,第二和第六层为网络多孔的钙掺杂La1?xCaxMnO3陶瓷,第三和第五层为网络多孔的锂掺杂La1?yLiyMnO3陶瓷,第四层为网络多孔的钙掺杂La1?zCazCrO3陶瓷,其孔为微米级大孔;第四层的孔径最大,第三和第五层的孔径居中,第二和第六层的孔径最小,各层厚度为0.05?0.2mm,总厚度为0.5?1mm;所述光吸收体的膜材质为氧化铝陶瓷,厚度为50?200nm。

2.如权利要求1所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体,其特征在于,钙掺杂La1?xCaxMnO3陶瓷中Ca掺杂量x为0.3~0.7,锂掺杂La1?yLiyMnO3陶瓷中Li掺杂量y为0.3~

0.7,钙掺杂La1?zCazCrO3陶瓷中Ca的掺杂量z为0.3~0.7。

3.如权利要求1所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体,其特征在于,所述的光吸收体的氧化铝膜层和镧系钙钛矿陶瓷界面之间有纳米过渡层。

4.如权利要求1所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体的制备方法,其特征在于,具体步骤如下:(1)固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体:将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬粉末分别按化学计量比进行混料后固相烧结,再经球磨、过筛分别得到锰酸镧、钙掺杂锰酸镧La1?xCaxMnO3、锂掺杂锰酸镧La1?yLiyMnO3以及钙掺杂铬酸镧La1?zCazCrO3粉末;

(2)制备孔隙梯度七层结构镧系钙钛矿陶瓷基片基片:先将上述粉末分别与聚乙烯醇溶液混合均匀,过目筛,得到造粒后的粉末;然后将造粒后的粉末依此均匀平铺于热压模具中,并在一定模压条件下得到生坯;再在在氩气环境下高温烧结,即得到表层致密、中间多孔的孔隙梯度镧系钙钛矿陶瓷体;

(3)镀制致密Al2O3膜:采用镀膜技术在孔隙梯度陶瓷表面镀制Al2O3膜;

(4)在空气炉中热处理,于膜基界面处产生过渡层。

5.如权利要求4所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体的制备方法,其特征在于,步骤(1)中,固相烧结工艺为:烧结温度为1000~1200℃,升温速度为5℃/min,保温时间为2~5h;以300转/min的速度球磨24~48h,球料重量比3:1。

6.如权利要求4所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体的制备方法,其特征在于,步骤(2)中,过筛指过200目筛,聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为

5~10%,聚乙烯醇溶液与陶瓷粉末的重量比为8~10%;热压模具直径为 模压条件为:压力为10~15MPa,保压时间为5~10min;在氩气环境下于1400~1500℃高温以及10~20kPa压力下烧结2~4h。

7.如权利要求4所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体的制备方法,其特征在于,步骤(3)中,Al2O3膜的厚度为50?200nm,镀膜技术为真空蒸镀、脉冲激光沉积、原子层沉积和磁控溅射技术中的一种。

8.如权利要求4所述的一种氧化铝/镧系钙钛矿陶瓷复合光吸收体的制备方法,其特征在于,热处理工艺参数为:在500~1000℃,保温5~30min。

说明书: 一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法技术领域[0001] 本发明涉及一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法,该膜基结构具有耐激光损伤、抗高温热震、宽光谱高吸收的特点,可应用于激光能量计、激光功率计和热辐射探测器等光热转换领域的元器件。背景技术[0002] 对于大功率激光的测量,多以热电堆型激光功率计/能量计为主,其测试原理主要是利用其探头中光吸收体吸收入射激光的光能,将光能转化成热能,光吸收体中央和边缘两端形成温度梯度场,探头中热电材料由此产生温差电动势,电动势的大小取决于激光转化的热能的大小。因此,探头中光吸收体的光吸收性能、耐激光损伤性能和抗热震性能将直接决定激光功率计/能量计测试的响应强度以及测试激光波长功率大小,是热电堆型激光功率计/能量计探测器的核心部件。[0003] 目前,热电堆型激光功率计/能量计探头的光吸收材料(包括薄膜和块体),主要包括金属纳米材料(如金黑、银黑、铁黑等)、碳材料、硫化物、碳化物、氮化物、光学玻璃等。然而,这些材料的吸收波长范围较窄(大多处于0.2~2.5μm),且在高温富氧环境(≥1000℃)中容易失效。而在高温富氧环境下光吸收材料多为金属氧化物及其复合氧化物材料,例如,文献“LuY,etal.HighthermalradiationofCa?dopedlanthanumchromite,RSCAdvances,2015,5:30667.”通过固相反应法制备了钙掺杂铬酸镧系列陶瓷,La0.5Ca0.5CrO3的光吸收性能最佳,其太阳能吸收率达到95%。文献“贺智勇等,(Ca,Fe)共掺铈酸镧陶瓷的近红外吸收性能,硅酸盐学报,2016,44:387–391.”通过高温固相烧结工艺制备钙铁共掺的铈酸镧系列红外吸收陶瓷,当Ca引入量x为0.1、Fe引入量y为0.15时,样品近红外吸收性能较优,在750~2500nm波段的平均吸收率为88.7%。这些文献与本申请相比,其材料和结构均显著不同,如未采用锰酸镧作为光吸收体基体的主要材料,其结构也没有呈现孔隙梯度特征,更没有膜基结构。[0004] 尽管有人也采用LaMnO3作为光吸收材料,如文献“ZhangPX,etal.LaCaMnO3thinfilmlaserenergy/powermeter,Optics&LaserTechnology,2004,36:341–343.”是采用脉冲激光沉积法将La1?xCaxMnO3(0.05≤x≤0.33)沉积在LaAlO3衬底上制备得到La1?xCaxMnO3薄膜作为激光功率计和能量计的光吸收层。与本申请相比,其La1?xCaxMnO3为致密薄膜,与本申请的孔隙梯度镧系钙钛矿陶瓷相比,存在形式与制备方法均有明显不同,且在膜基结构界面也没有过渡层。文献“AfifahN,etal.EnhancementofphotoresponsetoultravioletregionbycouplingperovskiteLaMnO3withTiO2nanoparticles,InternationalSymposiumonCurrentProgressinFunctionalMaterials,2017,188:012060.”采用溶胶?凝胶法制备了不同LaMnO3/TiO2摩尔比的LaMnO3/TiO2纳米复合材料,有效提高了材料在紫外光区吸收率。与本申请相比,其LaMnO3为纳米粉体而且为复合材料,与本申请孔隙梯度镧系钙钛矿陶瓷相比,无论从材料组成、结构还是制备方法均不相同,也没有膜基结构。

[0005] 激光对光学薄膜元件的破坏是影响高功率激光学薄膜元件使用寿命的主要原因,因此提高光学薄膜的抗激光损伤特性尤为重要。一般来说,抗激光损伤材料主要是陶瓷,特别是氧化物陶瓷材料,如文献“李兆岩等,工程陶瓷表面抗激光损伤能力研究,光子学报,2017,46:1014003。”研究了氧化锆(ZrO2)、氧化铝(Al2O3)、氮化硅陶瓷(Si3N4)、滑石瓷(MgO/SiO2)、304不锈钢(Fe/C/Cr)、5052铝合金(Al/Mg/Cu)材料在纳秒激光辐照下的抗激光损伤能力,结果表明氧化铝陶瓷的抗激光损伤阈值最高。故选择氧化铝材料的作为膜基结构耐激光损伤的薄膜。目前,Al2O3薄膜制备技术包括物理气相沉积、热蒸发沉积、磁控溅射、离子束辅助沉积、脉冲激光沉积、等离子体弧镀、化学气相沉积、溶胶?凝胶、阳极氧化等,如文献“刘志超等,ALD氧化铝单层膜1064nm激光损伤特性研究,应用光学,2011,32:373?376.”采用原子层沉积技术在熔石英和BK7基片镀制了50nm厚的Al2O3薄膜。与本申请相比,均未在孔隙梯度镧系钙钛矿陶瓷衬底上镀制致密Al2O3陶瓷薄膜,且膜基界面也没有过渡层。

[0006] 总之,上述文献与本申请相比,除了与激光功率计/能量计用光吸收体存在的形式、材料以及具体制备方法与本发明的膜基结构不同外,上述文献中光吸收体也没有呈现均匀的梯度多孔结构,也未在光吸收体表面采用镀制Al2O3膜。本申请由于设计制备了含Al2O3薄膜、孔隙梯度镧系钙钛矿陶瓷体,及其中间过渡层的膜基结构光吸收体,具有耐激光损伤、宽光谱高吸收、且抗高温热震的综合优点。发明内容[0007] 本发明的目的是针对现有激光功率计/能量计光吸收体吸收范围窄、吸收率低、不耐激光损伤、耐高温抗热震性能不佳的问题,旨在提供一种在0.3~14μm光谱范围内高吸收、耐激光损伤、抗高温热震的膜基结构,以及一种氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法。[0008] 为了实现上述目的,本发明是采取如下具体技术方案予以实现,一种氧化铝/镧系钙钛矿陶瓷复合光吸收体,其特征在于,所述光吸收体的基体材质为镧系钙钛矿陶瓷材料,第一和第七层为致密LaMnO3陶瓷,第二和第六层为网络多孔的钙掺杂La1?xCaxMnO3陶瓷,第三和第五层为网络多孔的锂掺杂La1?yLiyMnO3陶瓷,第四层为网络多孔的钙掺杂La1?zCazCrO3陶瓷,其孔为微米级大孔;第四层的孔径最大,第三和第五层的孔径居中,第二和第六层的孔径最小,各层厚度为0.05?0.2mm,总厚度为0.5?1mm;所述光吸收体的膜材质为氧化铝陶瓷,厚度为50?200nm。[0009] 光吸收体的制备方法包括如下步骤:[0010] (1)固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体:将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬分别按LaMnO3、La1?xCaxMnO3、La1?yLiyMnO3以及La1?zCazCrO3的化学计量比(0.3≤x≤0.7,0.3≤y≤0.7,0.3≤z≤0.7)进行混料后固相烧结(烧结温度为1000~1200℃,升温速度为5℃/min,保温时间为2~5h),再经以300转/min的速度、球料重量比3:1球磨24~48h,球磨后过筛分别得到锰酸镧、钙掺杂锰酸镧、锂掺杂锰酸镧和钙掺杂铬酸镧粉末;

固相法合成中配比用于光吸收体的镧系钙钛矿陶瓷是创新之处。

[0011] (2)制备孔隙梯度七层结构镧系钙钛矿陶瓷基片:先将上述四种粉末与聚乙烯醇溶液混合均匀,过200目筛,得到造粒后的粉末;其中聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为5~10%,聚乙烯醇溶液与陶瓷粉末的重量比为8~10%;然后将造粒后的粉末依次均匀平铺于 的热压模具中,第一和第七层为LaMnO3,第二和第六层为La1?xCaxMnO3,第三和第五层为La1?yLiyMnO3,第四层为La1?zCazCrO3,其中各层的粉末重量在0.2?0.8g之间,并在10~15Mpa的模压下保压5~10min得到生坯;再在在氩气环境下于1400~1500℃高温以及10~20kPa压力下烧结2~4h,即得到表层致密、中间多孔的孔隙梯度镧系钙钛矿陶瓷基片,其中各层厚度为0.05?0.2mm,总厚度为0.5?1mm;

[0012] (3)镀制致密Al2O3膜:采用真空蒸镀、脉冲激光沉积、原子层沉积或磁控溅射技术,在梯度陶瓷表面镀制50?200nm厚的Al2O3膜;[0013] (4)在空气炉中热处理:将上述膜基结构置于空气炉中,在500~1000℃,保温5~30min,于膜基界面处产生过渡层。

[0014] 本发明与当前激光功率计/能量计光吸收体对比的有益效果在于:(1)由于采用致密锰酸镧陶瓷作为膜基结构基体材料的最外层,可在其表面实现致密Al2O3薄膜的镀制,同时兼具有优良的宽光谱光吸收性能和耐高温性;(2)由于采用梯度多孔镧系钙钛矿陶瓷作为膜基结构基体材料的中间层,使得该膜基结构具有优良的抗高温热震性;优异的抗热震性归功于基材之间形成的网状多孔结构和梯度过渡层。孔隙率的增加可以降低材料的弹性模量,同时在冷却过程中热残余应力可以通过孔洞释放;另一方面,梯度过渡层可以消除基材各层界面的热膨胀系数和热导率的突变,从而提高高温抗热震性能;(3)由于该膜基结构表面镀制了50~200nm厚度的致密Al2O3薄膜,可显著提高基体材料的抗激光损伤性能。附图说明[0015] 构成本申请的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。[0016] 图1为本发明所述的膜基结构光吸收体的剖面示意图。[0017] 图2为本发明所述的第一、七层LaMnO3扫描电镜照片。[0018] 图3为本发明所述的第二、六层La0.5Ca0.5MnO3扫描电镜照片。[0019] 图4为本发明所述的第三、五层La0.5Li0.5MnO3扫描电镜照片。[0020] 图5为本发明所述的第四层La0.5Ca0.5CrO3扫描电镜照片。[0021] 图6为本发明所述的LaMnO3试样在0.3~14μm范围内的光吸收率。具体实施方式[0022] 为更进一步阐述本发明的技术方案及其特点,以下结合附图1、图2、图3、图4、图5及典型实施案例,对依据本发明提出的一种激光功率计/能量计用膜基结构及其制备方法做出进一步说明,其制备步骤包括:(1)固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体;(2)制备孔隙梯度七层结构镧系钙钛矿陶瓷基片;(3)镀制致密Al2O3膜;(4)在空气炉中热处理。值得注意的是,此处所描述的具体实施例仅用以解释本发明,并不用于限定本发明。

[0023] 详细案例说明如下:[0024] 实施例1:[0025] (1)首先,通过固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体。将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬粉末分别按LaMnO3、La0.5Ca0.5MnO3、La0.5Li0.5MnO3和La0.5Ca0.5CrO3的化学计量比进行混料后固相烧结(烧结温度为1100℃,升温速度为5℃/min,保温时间为3h),再经以300转/min的速度球磨48h、过筛分别得到锰酸镧、La0.5Ca0.5MnO3、La0.5Li0.5MnO3和La0.5Ca0.5CrO3陶瓷粉末;[0026] (2)其次,制备孔隙梯度七层结构镧系钙钛矿陶瓷基片。将上述四种粉末与聚乙烯醇溶液混合均匀,过200目筛,得到造粒后的粉末;其中聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为6%,聚乙烯醇溶液与陶瓷粉末的重量比为9%;然后将造粒后的粉末依次(第一和第七层为LaMnO3,第二和第六层为La0.5Ca0.5MnO3,第三和第五层为La0.5Li0.5MnO3,第四层为La0.5Ca0.5CrO3)均匀平铺于 的热压模具中,其中第一和第七层LaMnO3粉末0.2g,第二和第六层La0.5Ca0.5MnO3粉末0.2g,第三和第五层La0.5Li0.5MnO3粉末0.2g,第四层La0.5Ca0.5CrO3粉末0.8g,并在12MPa的模压下保压9min得到生坯;再在在氩气环境下于1450℃高温以及15kPa压力下烧结3h,即得到表层致密、中间多孔的孔隙梯度镧系钙钛矿陶瓷,其中第一和第七层为厚0.05mm、致密的LaMnO3(如图2),第二和第六层为厚0.05mm、较小孔的La0.5Ca0.5MnO3(如图3),第三和第五层为厚0.05mm、中孔的La0.5Li0.5MnO3(如图4),第四层为厚0.2mm、较大孔的La0.5Ca0.5CrO3(如图5);

[0027] (3)然后,在孔隙梯度陶瓷表面镀制致密Al2O3膜。采用真空蒸镀技术在孔隙梯度陶瓷表面镀制200nm厚的Al2O3膜;[0028] (4)最后,在空气炉中热处理上述膜基结构。将上述膜基结构置于空气炉中,在600℃,保温20min,得到含有界面过渡层的氧化铝/孔隙梯度镧系钙钛矿陶瓷复合光吸收体,示意图如图1所示。[0029] 实施例2:[0030] (1)首先,通过固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体。将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬粉末分别按LaMnO3、La0.6Ca0.4MnO3、La0.6Li0.4MnO3和La0.6Ca0.4CrO3的化学计量比进行混料后固相烧结(烧结温度为1100℃,升温速度为5℃/min,保温时间为4h),再经以300转/min的速度球磨24h、过筛分别得到锰酸镧、La0.6Ca0.4MnO3、La0.6Li0.4MnO3和La0.6Ca0.4CrO3陶瓷粉末;[0031] (2)其次,制备孔隙梯度七层结构镧系钙钛矿陶瓷基片。将上述四种粉末与聚乙烯醇溶液混合均匀,过200目筛,得到造粒后的粉末;其中聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为5%,聚乙烯醇溶液与陶瓷粉末的重量比为8%;然后将造粒后的粉末依次(第一和第七层为LaMnO3,第二和第六层为La0.6Ca0.4MnO3,第三和第五层为La0.6Li0.4MnO3,第四层为La0.6Ca0.4CrO3)均匀平铺于 的热压模具中,其中第一和第七层LaMnO3粉末0.2g,第二和第六层La0.5Ca0.5MnO3粉末0.4g,第三和第五层La0.5Li0.5MnO3粉末0.4g,第四层La0.5Ca0.5CrO3粉末0.8g,并在10MPa的模压下保压10min得到生坯;再在在氩气环境下于

1400℃高温以及20kPa压力下烧结4h,即得到表层致密、中间多孔的孔隙梯度钙钛矿陶瓷体,其中第一和第七层为厚0.05mm、致密的LaMnO3,第二和第六层为厚0.1mm、较小孔的La0.6Ca0.4MnO3,第三和第五层为厚0.1mm、中孔的La0.6Li0.4MnO3,第四层为厚0.2mm、较大孔的La0.6Ca0.4CrO3;

[0032] (3)然后,在孔隙梯度陶瓷表面镀制致密Al2O3膜。采用脉冲激光沉积技术在孔隙梯度陶瓷表面镀制50nm厚的Al2O3膜;[0033] (4)最后,在空气炉中热处理上述膜基结构。将上述膜基结构置于空气炉中,在500℃,保温30min,得到含有界面过渡层的氧化铝/孔隙梯度镧系钙钛矿陶瓷复合光吸收体,示意图如图1所示。[0034] 实施例3:[0035] (1)首先,通过固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体。将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬粉末分别按LaMnO3、La0.7Ca0.3MnO3、La0.7Li0.3MnO3和La0.7Ca0.3CrO3的化学计量比进行混料后固相烧结(烧结温度为1000℃,升温速度为5℃/min,保温时间为5h),再经以300转/min的速度球磨36h、过筛分别得到锰酸镧、La0.7Ca0.3MnO3、La0.7Li0.3MnO3和La0.7Ca0.3CrO3陶瓷粉末;[0036] (2)其次,制备孔隙梯度七层结构镧系钙钛矿陶瓷基片。将上述四种粉末与聚乙烯醇溶液混合均匀,过200目筛,得到造粒后的粉末;其中聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为7%,聚乙烯醇溶液与陶瓷粉末的重量比为9%;然后将造粒后的粉末依次(第一和第七层为LaMnO3,第二和第六层为La0.7Ca0.3MnO3,第三和第五层为La0.7Li0.3MnO3,第四层为La0.7Ca0.3CrO3)均匀平铺于 的热压模具中,其中第一和第七层LaMnO3粉末0.4g,第二和第六层La0.5Ca0.5MnO3粉末0.4g,第三和第五层La0.5Li0.5MnO3粉末0.4g,第四层La0.5Ca0.5CrO3粉末0.8g,并在13MPa的模压下保压7min得到生坯;再在在氩气环境下于1500℃高温以及10kPa压力下烧结2h,即得到表层致密、中间多孔的孔隙梯度钙钛矿陶瓷体,其中第一和第七层为厚0.1mm、致密的LaMnO3,第二和第六层为厚0.1mm、较小孔的La0.7Ca0.3MnO3,第三和第五层为厚0.1mm、中孔的La0.7Li0.3MnO3,第四层厚0.2mm、较大孔的为La0.7Ca0.3CrO3;

[0037] (3)然后,在孔隙梯度陶瓷表面镀制致密Al2O3膜。采用原子层沉积技术在孔隙梯度陶瓷表面镀制150nm厚的Al2O3膜;[0038] (4)最后,在空气炉中热处理上述膜基结构。将上述膜基结构置于空气炉中,在700℃,保温10min,得到含有界面过渡层的氧化铝/孔隙梯度镧系钙钛矿陶瓷复合光吸收体,每个LaMnO3基陶瓷层厚度均为0.12mm,示意图如图1所示。[0039] 实施例4:[0040] (1)首先,通过固相法合成宽光谱高吸收的镧系钙钛矿陶瓷粉体。将氧化镧、氧化锰、碳酸钙、碳酸锂、氧化铬粉末分别按LaMnO3、La0.3Ca0.7MnO3、La0.3Li0.7MnO3和La0.3Ca0.7CrO3的化学计量比进行混料后固相烧结(烧结温度为1200℃,升温速度为5℃/min,保温时间为2h),再经以300转/min的速度球磨36h、过筛分别得到锰酸镧、La0.3Ca0.7MnO3、La0.3Li0.7MnO3和La0.3Ca0.7CrO3陶瓷粉末;[0041] (2)其次,制备孔隙梯度七层结构镧系钙钛矿陶瓷基片。将上述四种粉末与聚乙烯醇溶液混合均匀,过200目筛,得到造粒后的粉末;其中聚乙烯醇溶液中聚乙烯醇与聚乙烯醇溶液的重量比为10%,聚乙烯醇溶液与陶瓷粉末的重量比为10%;然后将造粒后的粉末依次(第一和第七层为LaMnO3,第二和第六层为La0.3Ca0.7MnO3,第三和第五层为La0.3Li0.7MnO3,第四层为La0.3Ca0.7CrO3)均匀平铺于 的热压模具中,其中第一和第七层LaMnO3粉末0.4g,第二和第六层La0.5Ca0.5MnO3粉末0.4g,第三和第五层La0.5Li0.5MnO3粉末0.8g,第四层La0.5Ca0.5CrO3粉末0.8g,并在15MPa的模压下保压5min得到生坯;再在在氩气环境下于1500℃高温以及15kPa压力下烧结2h,即得到表层致密\中间多孔的氧化铝/锰酸镧膜基结构的光吸收体,其中第一和第七层为厚0.1mm、致密的LaMnO3,第二和第六层为厚0.1mm、较小孔的La0.3Ca0.7MnO3,第三和第五层为厚0.2mm、中孔的La0.3Li0.7MnO3,第四层为厚0.2mm、较大孔的La0.3Ca0.7CrO3;其LaMnO3陶瓷在0.3~14μm范围内的光吸收率如图6所示;[0042] (3)然后,在孔隙梯度陶瓷表面镀制致密Al2O3膜。采用磁控溅射技术在孔隙梯度陶瓷表面镀制200nm厚的Al2O3膜;[0043] (4)最后,在空气炉中热处理上述膜基结构。将上述膜基结构置于空气炉中,在1000℃,保温5min,得到含有界面过渡层的氧化铝/孔隙梯度镧系钙钛矿陶瓷复合光吸收体,示意图如图1所示。

[0044] 以上所述,仅是本发明的部分典型案例,并不以此对本发明限制,凡是根据本发明工艺实质对以上实施例所作的任何修改、变更以及等效元素的变换,均仍属于本发明技术方案的保护范围内。



声明:
“氧化铝/镧系钙钛矿陶瓷复合光吸收体及其制备方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记