1.本发明涉及高效核能发电技术领域,特别涉及一种多级分流的灵活高效超临界二氧化碳铅铋堆系统及方法。
背景技术:
2.第四代核电技术有着防止核扩散,具有更好的经济性,安全性高和废物产生量少等特征,受到了越来越多的关注,但是同时较高的热源温度对动力循环和工质也提出了更高的新的要求。铅冷快堆(lfr)是第四代反应堆系统极具发展潜力的堆型之一,具有反应堆设计紧凑且体积小、导热性能好、热效率高、功率大、可自然循环且噪音小等优点,非常适合核动力潜艇、航母等对小体积、高功率、高灵活性有特别需要的平台,也可满足其他多重环境中的有高效、灵活等复杂用电需求的平台。
3.超临界二氧化碳循环发电技术以二氧化碳为工质,采用真实气体闭式布雷顿循环方式发电,彻底改变了传统热力发电技术140多年来以水和蒸汽为工质、采用朗肯循环的发电方式。与传统发电技术相比,超临界二氧化碳循环发电技术具有效率高、灵活性好、适用性广、设备和系统体积小等优势,是热力发电领域具有划时代意义的变革性高效低碳发电技术。
4.因此,超临界二氧化碳布雷顿循环被广泛认为是第四代先进核电系统的理想发电循环。超临界二氧化碳布雷顿循环发电系统具有设备紧凑、热功转换效率高、灵活性强等优势,其循环特性与铅冷堆紧凑、高效、灵活的应用需求高度吻合,被认为是铅冷堆的理想动力循环。
5.超临界二氧化碳铅铋堆发电系统中,液态金属铅铋回路和超临界二氧化碳动力循环是通过铅铋-超临界二氧化碳换热器进行换热的,两者换热温度窗口的良好匹配,是实现整个发电系统高效的关键所在。为了降低铅铋磨损并尽可能降低铅铋泵的容量和功耗,铅铋回路设计时通常会对流速和流量都有所限制,这使得铅铋在主换热器内的放热温度区间通常较大。以目前我国某铅铋堆的设计为例,铅铋在主换热器内的放热温度区间大约为500℃~270℃。而对于超临界二氧化碳布雷顿循环而言,其无极全流量近等温回热的特点决定了整个动力循环的平均吸热温度较高,吸热温度窗口较窄,以目前公认效率较高的分流再压缩超临界二氧化碳布雷顿循环而言,其在主换热器内的温升通常约为100℃左右。这就使得超临界二氧化碳动力循环的吸热温度与液态金属铅铋的换热窗口匹配度较差,铅铋回路得不到充分冷却,较低温度区间的热量无法得以充分利用,严重影响系统整体发电效率。
6.但是从公开的文献资料可知,虽然目前已有部分关于铅铋堆超临界二氧化碳发电系统
声明:
“多级分流的灵活高效超临界二氧化碳铅铋堆系统及方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)