一种石墨烯改性碳/碳复合材料的制备方法,涉及一种改性碳/碳复合材料的制备方法。本发明是要解决现有的碳/碳复合材料的性能差的问题。方法:一、石墨烯溶液涂层处理预制体;二、沥青液相浸渍预制体;三、重复步骤二2~3次,将沥青加热,然后将处理过的预制体浸入沥青中,常压浸渍,然后取出;四、浸渍后预制体的碳化;五、重复步骤二至步骤四4次,然后将样品放入碳化炉,在氩气保护下升温,保持温度,降温,取出样品,即制得石墨烯改性的碳/碳复合材料。本发明方法可提高石墨烯改性的碳/碳复合材料的石墨化度、弯曲强度和纤维束/基体界面剪切强度。本发明方法用于改性碳/碳复合材料。
本发明公开了一种航天非金属基复合材料结构连接用Ti-V-Al轻质记忆合金功能化处理方法,属于航天复合材料技术领域,本发明的方法是将电弧熔炼的Ti-V-Al合金铸锭固溶处理后进行热轧,到一定厚度后重新固溶处理并淬火,之后进行冷轧。对冷轧后的试样进行退火处理,即得到具有优异形状记忆效应的Ti-V-Al轻质记忆合金。本发明能大幅提高Ti-V-Al合金形状记忆效应,其完全可逆应变达到7.5%,是除TiNi合金外的最高值。经过热机械处理后的Ti-V-Al合金是一种在航空航天领域极具潜力的复合材料结构连接用轻质记忆合金。
一种基于半固态挤压制备定向排列SiC纳米线增强铝基复合材料的方法。本发明涉及一种基于半固态挤压制备定向排列SiC纳米线增强铝基复合材料的方法。本发明的目的是为了解决采用常规热挤压处理使SiC纳米线定向排列过程中对SiC纳米线损伤严重的问题。方法:一、非定向SiC纳米线增强铝基复合材料的制备;二、非定向SiC纳米线增强铝基复合材料及热挤压模具的预热;三、半固态挤压制备定向排列SiC纳米线增强铝基复合材料。本发明在固相线以上、液相线以下对SiC纳米线增强铝基复合材料进行热挤压处理。铝基体的晶粒边界发生熔化,铝基体处于固‑液混合状态,对SiC纳米线约束力小。SiC纳米线可以实现低损伤的定向排列。
用于制造复合材料螺栓坯料成型方法,本发明涉及制备螺栓的方法。本发明要解决现有玻璃钢复合材料螺栓成型时螺牙与螺杆纤维不连续造成的螺栓结构强度、刚度降低的技术问题。方法:一、设计坯料铺层结构;二、铺放复合材料预浸料;三、裁剪,合模,固化;四、切割;五、加工至棒料。本发明的方法解决了玻璃钢复合材料螺栓成型时纤维不连续的难题。玻璃钢复合材料螺栓在坯料制造过程中,使用了网状结构的增强材料,保证了纤维的连续性,从而使玻璃钢复合材料螺牙与螺杆连接处的纤维连续。本发明用于制备复合材料螺栓。
建立纤维增强树脂基复合材料孔隙问题的表征与评价模型的方法,涉及纤维树脂基复合材料孔隙问题的表征与评价的技术。它解决了现有技术中复合材料的性能表征很难建立准确的预报模型的问题。本发明的方法为:首先采用光学显微镜和图像分析方法获得同铺层的复合材料层压板的孔隙的形貌特征参数,将其作为输入参数;并对含不同孔隙率的复合材料进行力学性能测试,获得力学性能参数,将其作为输出参数;然后将获得的所有输入参数和输出参数组成多个训练数据对;最后,建立神经网络模型,并采用获得的多个训练数据对所述神经网络模型进行训练、优化和测试,最终获得复合材料孔隙问题的表征与评价模型。本发明适合对现有各种复合材料建立表征与评价模型。
一种高温介电性能PBO纤维复合材料的制备方法,目的是要在保证PBO纤维氰酸酯复合材料良好介电性能的情况下提高复合材料界面作用力,解决PBO纤维表面光滑与树脂界面粘接强度低等问题。制备方法:一、制备超支化PBO聚合物接枝液;二、PBO纤维束的浸润处理;三、PBO纤维束的脱酸处理;四、PBO纤维束的辐照接枝处理;五、PBO纤维氰酸酯复合材料的制备。本发明利用Co60γ射线辐照方法在PBO纤维表面接枝超支化PBO聚合物,增加了PBO纤维氰酸酯复合材料的界面结合强度,界面强度提高幅度为32~45.65%,且制得处理PBO纤维氰酸酯复合材料具有良好介电性能,有利于制备结构功能一体化的透波复合材料。
一种高强韧石墨烯增强铝基复合材料制备方法,涉及一种铝基复合材料的制备方法。目的是解决铝基复合材料制备时石墨烯在铝基体中分散不均匀、以及制备的复合材料存在强度‑韧性倒置的问题。方法:以石墨烯微片和铝金属粉末制备厚度为产品厚度2~2.5倍石墨烯微片增强铝基复合材料,与铝合金板材叠放进行累积复合轧制变形处理,热处理。本发明利用多道次累积复合轧制技术使石墨烯微片的片层逐渐打开、材料晶粒大幅度细化并形成复合界面,所得复合材料强度增加的同时,材料韧性没有降低,解决了石墨烯增强铝基复合材料强度‑韧性倒置的问题。本发明适用于制备石墨烯增强铝基复合材料。
一种改性硅树脂耐高温隔热涂层复合材料及其制备方法,属于隔热涂层制备技术领域。所述基体复合材料为玻璃纤维布增强聚酰亚胺树脂复合材料和玻璃纤维布增强RSN‑840硅树脂复合材料,涂层为经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂涂层,为改善云母片在硅树脂中的分散性,采用KH550偶联剂改性。其中:经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂和聚酰亚胺复合材料以及RSN‑840硅树脂复合材料具有很好的相容性,避免出现不能成膜和成膜不均的现象。外层经SiO2和云母改性的耐高温隔热RSN‑6018硅树脂复合材料层具有优异的耐高温性能,抗冲刷,抗烧蚀,高温下具有良好的耐热性,可有隔热性测试数据看出,涂层具有良好的隔热性,对内层聚合物复合材料起到了良好的热保护效应。
一种酚醛球/聚丙烯复合材料及其制备方法,本发明涉及一种复合材料及其制备方法,具体涉及一种改性的聚丙烯复合材料及制备方法,它要解决现有改性聚丙烯复合材料的刚性和模量较低的问题。该酚醛球/聚丙烯复合材料按质量百分比由70%~93%的聚丙烯,5%~15%的马来酸酐接枝聚丙烯,1%~20%的酚醛球和0.1%~3%的抗氧剂制成。制备方法:一、称取原料;二、烘干聚丙烯,对酚醛球进行洗涤和干燥;三、原料放入低速混合机混均,然后放入双螺杆挤出机中挤出复合材料,经切粒、成型完成复合材料的制备。本发明的酚醛球/聚丙烯复合材料机械性能良好,可用作汽车配件、电器、工程建筑等材料。
阻燃聚乙烯复合材料的制备方法,它属于阻燃复合材料制备的领域,具体涉及一种复合材料的制备方法。本发明是要解决现有的阻燃材料阻燃效果不彻底,且阻燃材料燃烧后易产生危害人体和环境的有害物质,燃烧时聚乙烯的熔融低落的技术问题。本方法如下:制备纳米氢氧氧铋包裹可膨胀石墨的粉体;将纳米氢氧氧铋包裹可膨胀石墨的粉体,经流变仪与聚乙烯混合,机压成型,冷却至室温,即得。本发明制备的阻燃聚乙烯复合材料阻燃含量低、效果好、燃烧无毒、生烟量小。
低熔点合金涂覆陶瓷相增强体/铝基复合材料的制备方法,它涉及一种涂覆陶瓷相增强体的方法。本发明解决了溶胶凝胶方法在增强体表面涂覆涂层的工艺复杂的问题。本发明方法如下:将硝酸铋水溶液、硝酸铅水溶液、氯化铟水溶液及氯化锡水溶液中的两种或两种以上添加到稀硝酸溶液中所得的混合液与氨水溶液滴加到增强体溶液中至pH值为6~14,再将增强体制成预制件在350℃~1100℃的温度下保温,即得到涂覆金属氧化物的陶瓷相增强体,然后利用挤压铸造的方法制备复合材料。本发明方法工艺简单,缩短了复合材料的生产周期,应用本发明所得铝基复合材料在温度为25℃、频率为70Hz的条件下的阻尼值为0.016~0.018。
本发明属于防护结构设计技术,涉及对陶瓷/复合材料防护结构的改进。它由一层陶瓷面板[1]和与陶瓷面板[1]粘接的背板组成,其特征在于,所说的背板为夹层板,该夹层板由两层纤维增强树脂基复合材料板[2]和夹在上述两层纤维增强树脂基复合材料板之间的泡沫铝芯板[3]组成,纤维增强树脂基复合材料板[2]和泡沫铝芯板[3]由板芯胶粘接构成夹层板。本发明所用夹层结构背板可在同等面密度的条件下为陶瓷面板提供刚性更大的支撑,充分发挥陶瓷材料高压缩强度的优势。夹层结构中的闭孔泡沫铝还可以延迟弹击时冲击波沿厚度方向的传递,延缓冲击波对陶瓷面板的破坏,提高整体防护结构的弹道极限速度。
一种SiO2陶瓷基复合材料的钎焊方法,本发明涉及复合材料的钎焊方法。本发明要解决现有SiO2陶瓷基复合材料表面活性钎料的润湿性极差,难以实现复合构件的高质量连接甚至于有效地连接,且采用钎焊方法连接SiO2陶瓷基复合材料-金属构件时,由于SiO2陶瓷基复合材料和金属材料的热膨胀系数不同,使得接头在钎焊过程中产生很大的残余应力的问题。方法:首先打磨,然后对SiO2陶瓷基复合材料表面机械打孔,再进行等离子体处理,最后钎焊SiO2陶瓷基复合材料与金属。本发明用于SiO2陶瓷基复合材料的钎焊方法。
碳纤维复合材料桅杆的制造方法,它涉及一种桅杆的制造方法。本发明为解决现有金属桅杆的质量大、强度低、稳定性不好,限制了船的快速航行的问题。实现本发明的步骤:一、设计制备芯模;二、将干燥的碳纤维浸渍于树脂混合液中得到碳纤维复合材料;三、将碳纤维复合材料在芯模上逐层缠绕;四、加热固化;五、拆除芯模后即得到碳纤维复合材料桅杆的毛料,去除毛料两端的加工长度,去除毛刺,即得到碳纤维复合材料桅杆。由于本发明的桅杆是采用碳纤维复合材料制成的,使得本发明的桅杆的重量比金属桅杆的重量减轻43.4%,又由于碳纤维复合材料是层层交叉缠绕,因此提高了碳纤维复合材料桅杆的强度,增加了帆船的稳定性,使得帆船能够快速航行。
本发明属于机械零部件设计领域,涉及一种碟形碳纤维复合材料组合压簧结构及其制造方法,是针对现有膜片弹簧开口处容易产生裂纹的问题所提出的,组合压簧包括由上至下依次设置的上压盘、上固定圈、C形碳纤维复合材料压簧组、下固定圈和下支撑盘,C形碳纤维复合材料压簧组上部与上固定圈通过螺栓安装在上压盘上,C形碳纤维复合材料压簧组下部与下固定圈通过螺栓安装于下支撑盘上,且上压盘与下支撑盘通过芯部套筒实现机构径向定位,C形碳纤维复合材料压簧组为四组至八组,且均匀分布于上固定圈和下固定圈的圆周方向,所有C形碳纤维复合材料压簧组构成组合压簧的弹性部分。本发明可在不拆卸安装轴的条件下实现C形碳纤维复合材料压簧的更换。
本发明公开一种航天防热用氮化硼‑锶长石陶瓷基复合材料及其制备方法,涉及陶瓷基复合材料的制备领域,所述复合材料的制备方法包括:S1:称取锶长石粉体与六方氮化硼粉体进行混合,得到原料粉体;S2:对所述原料粉体进行球磨,得到球磨粉末;S3:对所述球磨粉末进行搅拌烘干,得到原料粉末;S4:对所述原料粉末进行冷压,得到块体原料;S5:对所述块体原料进行热压烧结,得到航天防热用氮化硼‑锶长石陶瓷基复合材料。本发明提供的航天防热用氮化硼‑锶长石陶瓷基复合材料的制备方法,在保证氮化硼‑锶长石陶瓷基复合材料介电性能的前提下,使得制备的氮化硼‑锶长石陶瓷基复合材料具有良好的力学及可加工性能。
一种BN-MAS陶瓷复合材料及其制备方法,涉及一种氮化硼基陶瓷复合材料及其制备方法。本发明是要解决现有氮化硼陶瓷材料生产中烧结温度过高、烧结压力过大导致成本高、效率低的技术问题。一种BN-MAS陶瓷复合材料由MgO粉末、Al2O3粉末、非晶SiO2粉末和六方BN粉末制成。制备方法为:一、称量;二、球磨制浆;三、干燥制粉;四、装模预压;五、烧结处理,即得BN-MAS陶瓷复合材料。本发明的BN-MAS陶瓷复合材料的致密度为99.4%,抗弯强度为213.2MPa±24.8MPa,介电常数为5.81,介电损耗角正切值为6.57×10-3。本发明应用于BN-MAS陶瓷复合材料的制备领域。
本发明公开了一种三元多级多维结构复合材料及其制备方法,利用其突出的协同效应和独特的多级多维结构,发挥出优异的电化学综合性能。所述复合材料由低维纳米结构的TiO2和次相高比容量金属氧化物以及二维微米(x-y平面方向)高电导率质朴石墨烯构成。本发明通过四氢呋喃溶液混合法,以降低溶液系统的总表面自由能为驱动力,将纳米结构的TiO2和高比容量金属氧化物均匀负载并紧密结合在质朴石墨烯纳米片的裸露表面上。本发明的三元多级多维结构复合材料有效结合了每一种组分的突出功能:TiO2优异的循环性能和突出的安全性,次相金属氧化物的高比容量和质朴石墨烯良好的导电性能。
本发明的目的在于提供一种既可以满足大变形要求,又能够满足往复变形要求的、在每个构型下不需要外部能源来维持其稳定形状的具有双稳定构型的混杂复合材料层板。它是一种叠层结构,采用非对称铺层;分为中间层、上层和下层。中间层为各向同性均质材料层,采用钢、铝合金或塑料膜。上层采用单向纤维增强的树脂基复合材料,铺层方向为0度或90度,为单层复合材料或几个单层复合材料叠合而成。下层采用单向纤维增强的树脂基复合材料,铺层方向为90度或0度。本发明具有双稳定构型的混杂复合材料层板,可以通过调节中间层材料的性质和尺寸,改变形状变化大小,增加了双稳定结构的可设计性。
一种粉末形变复合材料的制备方法,它涉及一种复合材料的制备方法。它解决了现有W-CU和MO-CU复合材料的制备方法存在设备成本高、成分难以准确控制、工艺过程复杂、产品价格高、产品相对密度低于99%、产品两相界面结合困难、热处理后的性能低以及采用大挤压比制备高钨及高钼的W-CU和MO-CU的复合材料方法在工业上难以实际应用的问题。方法:一、制复合粉末;二、制冷压坯料,然后制烧结坯料;三、烧结坯料热挤压;四、热挤压后的坯料热处理后即得粉末形变复合材料。本发明中采用常规设备,成本低,工艺简单,产品相对密度为99.5~99.6,能够采用大挤压比制备,适合工业化生产,粉末形变复合材料热处理后的性能好。
一种超稳定金属基复合材料用低膨胀磷酸盐粉体及其制备方法,它涉及低膨胀磷酸盐粉体及其制备。它要解决现有金属基复合材料热膨胀系数大的问题。产品:由醇溶性磷酸盐树脂、负膨胀AlPO4‑17粉体、固化剂和无机填料制成。方法:制备醇溶性磷酸盐树脂;制备负膨胀AlPO4‑17粉体;固化剂和无机填料进行表面处理;混合制备。本发明中低膨胀磷酸盐粉体,‑120~1200℃热膨胀系数为0~1.0×10‑6K‑1,1000℃空气热失重为3.5%。低膨胀磷酸盐粉体加入到金属基复合材料中,使拉伸强度增大、弹性模量增大、热膨胀系数降低、耐热性提高。本发明工艺简单,便于工业化生产。本发明适用于作为金属基复合材料增强体。
树脂基碳纤维复合材料桁架杆件连接方法,它涉及一种复合材料杆件连接方法。该方法解决目前复合材料桁架中杆件连接不能兼顾连接强度高、质量小、精度高以及工艺实现性强的问题。所述方法包括以下步骤:制备碳纤维复合材料薄壳;杆件初步连接固定;杆件初步连接固定后,将碳纤维束浸润树脂,手工引导浸润过树脂的碳纤维束沿着薄壳外表面连续缠绕;在加压金属模具的紧固面上铺放一层连续的T700-3K平纹碳布,然后将多个加压金属模具扣合在相对应的缠绕碳纤维束的薄壳外部,紧固加压金属模具并实现对连接处加压;将经上述步骤后的杆件连接部位送入固化炉固化。本发明用于复合材料桁架杆件连接。
一种通过微弧氧化提高碳化硅颗粒增强铝基复合材料盐雾腐蚀能力的方法,属于碳化硅颗粒增强铝基复合材料的技术领域。本发明要解决由于颗粒增强铝基复合材料制备过程中引入的结构缺陷,以及基体金属与陶瓷相的腐蚀电位差异等原因使得铝基复合材料相较于铝合金更易受到腐蚀的技术问题问题。本发明方法:一、预处理;二、微弧氧化处理,三、盐雾腐蚀,用CrO3与H3PO4混合溶液进行清洗。本发明在碳化硅颗粒增强铝基复合材料表面制备均匀完整无裂纹的陶瓷膜层,盐雾腐蚀能力增强。
一种原位接枝氧化石墨烯改性耐高温环氧树脂复合材料的制备方法,它涉及一种耐高温环氧树脂复合材料的制备方法。本发明的目的是要解决现有石墨烯/环氧树脂复合材料的制备工艺复杂,玻璃化转变温度提高程度低的问题。方法:一、湿混法制备原位接枝氧化石墨烯/环氧树脂共混物;二、研磨、脱溶剂、加固化剂,得到原位接枝氧化石墨烯改性耐高温环氧树脂复合材料。本发明可获得原位接枝氧化石墨烯改性耐高温环氧树脂复合材料。
多铁性纳米铁酸铋颗粒改性聚乙烯复合材料的方法,它涉及一种复合材料的改性方法。本发明为了解决现有聚合物绝缘电介质材料体积电阻率小的技术问题。本方法如下:一、制备纳米铁酸铋颗粒;二、改性纳米铁酸铋颗粒;三、将改性后的纳米铁酸铋颗粒与聚乙烯加入混炼机共混1小时,造粒,即得多铁性纳米铁酸铋颗粒改性聚乙烯复合材料。本发明方法得到的多铁性纳米铁酸铋颗粒改性聚乙烯复合材料的体积电阻率为1.18×1016Ω·m。铁酸铋改性聚乙烯后具有较高的击穿场强、较高的体积电阻率、延长了电树枝老化击穿时间。本发明属于复合材料的改性领域。
一种磁性复合材料的SERS增强因子模型建立方法,属于建立复合材料SERS增强因子计算模型领域。现有的SERS增强效应的预测模型无法计算出不同因分子所产生的增强效果。一种磁性复合材料的SERS增强因子模型建立方法,综合电磁增强机制和化学增强机制建立SERS增强因子计算模型,具体通过描述金属内部的等离子体振荡的步骤,以及综合电磁增强机制和化学增强机制,建立SERS增强因子计算模型的步骤。本发明是对磁性复合材料的增强机制进行系统性综合性的分析后建立的SERS增强因子计算模型,所建立模型不仅能解析其增强机制实现对增强效果的预测,也为复合材料的基底制备提供了理论指导。
一种改性PEEK基上浆剂及其制备和其在碳纤维/环氧树脂复合材料制备中的应用。本发明属于纳米材料改性碳纤维技术领域。本发明的目的是为了解决目前现有PEEK基上浆剂无法有效提高碳纤维/环氧树脂复合材料中纤维与基体间界面结合强度以及由于CNTs易团聚而导致CNTs增强的碳纤维/环氧树脂复合材料力学和电学性能不高的技术问题。本发明的改性PEEK基上浆剂以DMF为溶剂,以CNTs/MXenes‑PEEK复合物为溶质。制备:以HATU为缩合剂,由PEEK‑COOH、MXenes‑NH2和CNTs‑NH2经缩合反应制得。应用:将碳纤维织物置于改性PEEK基上浆剂中震荡浸渍得到改性CF织物薄膜,然后叠放并逐层浇铸树脂,得到MXenes/CNTs增强碳纤维/环氧树脂复合材料。本发明的方法操作简单可控,成本低廉可适用于获得其他高性能复合材料。
本发明公开一种复合材料加固裂纹管的应力强度因子计算方法与装置,解决了现有的计算方法复杂,适用范小的问题,本发明的计算方法,包括以下步骤:步骤1:测得管道弹性模量、内径、外径、壁厚、裂纹长度与角度;测得复合材料的弹性模量、厚度及内径。步骤2:依据量纲分析方法确定关键参数并将其无量纲化,通过有限元分析建立的各参数与应力强度因子的定量关系,计算复合材料加固裂纹管的应力强度因子。本发明提供的方法操作简单,与实际工况相符,适用于工程中复合材料加固裂纹管的应力强度因子的计算。根据上述计算方法,本发明提出一种复合材料加固裂纹管的应力强度因子计算装置,可应用于管道加固设计与安全评估。
本发明公开了一种高体积分数陶瓷晶须增强金属基复合材料的回收利用工艺,该工艺将来自于陶瓷晶须增强金属基复合材料经机加工得到的残屑,利用固相再生机理进行回收利用,主要包括的步骤为:(1)残屑预处理、(2)机械研磨、(3)冷压、(4)热处理和(5)分析表征,其中,复合材料中的陶瓷晶须包括碳化硅晶须和硼酸镁晶须,金属包括铝,硼酸镁晶须的含量为50~75vol%。经过本发明工艺得到的再生的高体积分数陶瓷晶须增强金属基复合材料,其工艺过程简便、成本低,再生过程无污染,实现了陶瓷晶须增强金属基复合材料的再利用,能够适应当前国家大力强调的绿色环保工业化的方向。
一种Ti3C2MXene‑Co复合材料及其制备方法,本发明涉及Ti3C2MXene复合材料及其制备方法。本发明是要解决现有的Ti3C2MXene材料无法重复利用的问题。本发明的Ti3C2MXene‑Co复合材料是由二维层状Ti3C2和负载在片层上的棒状Co单质组成。制法:将Ti3C2MXene分散在去离子水中分散,然后加入Co(NO3)2·6H2O持续搅拌,再加入NH4F和CO(NH2)2,搅拌混合均匀,得到前驱液;将前驱液加入到水热反应釜中反应,过滤、干燥,得到Ti3C2MXene‑Co复合材料。该复合材料可用于吸附、催化领域。
中冶有色为您提供最新的黑龙江哈尔滨有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!