本发明适用于复合材料技术领域,提供了一种碳纤复合材料的制备方法及碳纤复合材料,该碳纤复合材料的制备方法包括以下步骤:将空心玻璃微珠粉、环氧树脂、超纤材料、偶合剂进行捏合,得到填充材料;将填充材料置于模具中进行加压热成型处理,得到所述碳纤复合材料。本发明实施例提供的一种碳纤复合材料的制备方法,通过采用空心玻璃微珠粉、环氧树脂、超纤材料、偶合剂作为原料,其制得的碳纤复合材料比重轻,加热加压时不易热变形,不发生二次发泡现象,可用作为碳纤自行车、羽毛球拍、鞋底等材料。
本发明公开了一种汽车尾气Al2TiO5/SiC多孔复合材料及其制备方法,它是以等摩尔量的Al2O3和TiO2为基本原料,添加占基本原料质量分数1~10%的SiC颗粒和SiC晶须以及占基本原料体积份数10~30%的造孔剂,通过无压烧结反应获得的等轴状微孔和纤维连通孔的多孔复合材料,该多孔复合材料孔径3~20μm,孔隙率45.3~65.8%,抗压强度为11.42~17.53Mpa。本发明利用SiC颗粒和SiC晶须提高多孔体强度,在Al2TiO5基体中生成TiC和莫来石晶须增强相,有利于改善壁面的孔洞结构,提高比表面积,又提高孔隙率、气体液体的透过性以及过滤体的强度、耐磨性等。
本发明公开了一种复合材料抗侧滚片梁、其成型工艺及复合材料中低速磁浮抗侧滚梁,复合材料抗侧滚片梁,由碳纤维复合材料制备而成,碳纤维的铺设方向包括0°、90°、‑45°和45°;±45°的铺层碳纤维总量大于0°和90°的碳纤维铺层量;其中,所述0°为片梁的长度方向,90°为片梁的宽度方向;复合材料抗侧滚片梁沿其长度方向的宽度减小,沿其长度方向设置有减重孔,不同减重孔与片梁边缘之间的距离基本相等。
本发明涉及一种可产生形变的复合材料体,尤其涉及一种可由电、磁激励产生超大形变智能复合材料体,包括磁性体与基体,其中磁性体长度方向和宽度方向尺寸不同,基体内设置空穴,磁性体被包裹在空穴中,本复合材料体一定程度上可替代现有的磁致伸缩材料,它可以产生超大形变,而且具有既可电致伸缩又可磁致伸缩的特性,使伸缩材料体外观简捷,整体结构紧凑。
本申请公开了一种CdS/Co3O4复合材料及其制备方法和应用,所述CdS/Co3O4复合材料包括Co3O4纳米纤维以及附着于所述Co3O4纳米纤维之间的CdS纳米颗粒,其中,所述Co3O4纳米纤维的直径为200~300nm,所述CdS纳米颗粒的直径为300~400nm,所述CdS/Co3O4复合材料可制成气敏元件、丙酮气体传感器以及光激发气敏测试平台,所述CdS/Co3O4复合材料及其制品能够在室温(25℃)下对丙酮气体进行检测,具有灵敏度高、响应恢复时间短、选择性好等优点,检测范围宽,有效地解决了传统丙酮气体传感器在低温、低气体浓度区域气敏特性较差的问题。
本申请实施例公开了一种纳米复合材料及其制备方法、使用方法和器件,纳米复合材料,其特征在于,包括交联结合的第一纳米颗粒和第二纳米颗粒;所述第一纳米颗粒为过渡族金属纳米颗粒,所述第二纳米颗粒为以下材料中的一种或其组合:氮化锂纳米颗粒、氧化锂纳米颗粒、磷化锂纳米颗粒、硒化锂纳米颗粒和硫化锂纳米颗粒。所述纳米复合材料可以在低电压下进行磁性调控,实现高速、高密度的电子自旋信息存储。
本发明公开了一种LiFePO4@C/MXene复合材料的制备方法,首先通过溶剂热法制备磷酸铁锂纳米片,然后利用柠檬酸和乙二醇经高温处理进行碳包覆,最后通过静电自组装的方法实现碳包覆的磷酸铁锂和MXene的复合,经冷冻干燥得到LiFePO4@C/MXene复合材料,在低温复合步骤可有效抑制MXene的氧化,充分发挥二维MXene高电子导电性的优势,制备的LiFePO4@C/MXene复合材料能有效克服磷酸铁锂电子导电性差,循环性能不稳定的问题,且合成条件温和,制备工艺简单,成本低廉。本发明制备的LiFePO4@C/MXene复合材料适用于作为锂电池正极材料。
本发明属于超级电容器技术领域,涉及一种用于超级电容器的石墨烯/泡沫镍复合材料电极的快速制备方法,能够快速制备出具有高比表面积和高孔隙率的高性能石墨烯/泡沫镍复合材料电极;具体步骤包括:(1)鳞片状石墨的氧化过程;(2)氧化石墨烯的洗涤和干燥;(3)泡沫镍的预处理;(4)氧化石墨烯/泡沫镍复合材料的制备;(5)石墨烯/泡沫镍复合材料电极的制备;(6)超级电容器的制备和测试;该方法操作简便,过程简单,用时短少,条件易控,环境友好。
本发明提供了一种可用于检测丙酮的多面体状四氧化三钴‑三维多孔石墨烯凝胶复合材料传感器膜的制备方法,属于气敏传感器技术领域。我们首先通过水热合成三维多孔石墨烯凝胶,然后将制备的三维多孔石墨烯凝胶与钴基的金属有机框架材料复合,最后将复合材料在空气下热处理得到多面体状CO3O4和三维多孔石墨烯凝胶的复合材料,再利用涂覆法制备成膜,用于丙酮传感检测。该复合材料膜可检测不同浓度的丙酮,在空气气氛下对50ppm CO2的灵敏值高达81.2(Rgas/R0)。此制备方法简单,原材料成本低廉,可重复性好,材料膜性能优异,具有很好的应用价值和前景。
本发明提供了一种PP/SBR共混改性复合材料及制备方法,它可以解决现有技术存在的配料繁多,工艺复杂及成本较高的问题。为了解决上述技术问题,本发明的技术方案是,一种PP/SBR共混改性复合材料,所述复合材料包括以下组分,按质量份计,均聚聚丙烯粒子50—75份,粉末丁苯橡胶5—20份,成核剂1—3份,交联剂1—3份,填料15—25份,抗氧剂0.1—0.3份,润滑剂0.5—1份。采用本发明的技术方案后,冲击强度提高了67%。本发明的复合材料的拉伸强度与普通pp相比,拉伸强度保持在30MPa以上,并没有下降。
本发明公开了一种强π‑π共轭的缺陷石墨烯和酞菁铁复合材料关于氧还原电催化剂的制备方法,属于电催化领域。该强π‑π共复合材料采用缺陷石墨烯和酞菁铁为原料,成功地制备出了具有优异氧还原活性的电催化剂。该强π‑π共轭复合材料具有超薄纳米结构以及一定的缺陷结构,酞菁铁纳米片在缺陷石墨烯表面上均匀分布,用作氧还原电催化剂时表现出优异的催化活性(在0.1M KOH电解液中的半波电位为0.89V vs.RHE)。目前应用于电催化氧还原(ORR)的催化剂为传统的贵金属铂(Pt)及铂基复合物,但由于它们价格昂贵、储量低、稳定性以及耐甲醇性能较差等问题,使得其作为ORR催化剂的大规模应用受到限制。因此,开发一种制备简单,且具有高催化活性和稳定性的ORR催化剂具有重要的意义。本发明中,强π‑π共轭复合材料的制备过程简单,在碱性条件下ORR催化性能优异,是非常有前景的电催化材料。
本发明属于Au‑GSH@TiO2@PDMS复合材料技术领域,公开了Au‑GSH@TiO2@PDMS复合材料及其制备方法和应用。Au‑GSH@TiO2@PDMS复合材料的制备方法包括,合成谷甘光肽(GSH)保护的金纳米团簇Au‑GSH、结晶态TiO2的制备、Au‑GSH@TiO2复合材料的制备以及采用紫外光固化法将PDMS将接枝在Au‑GSH@TiO2表面,最终得到Au‑GSH@TiO2@PDMS复合材料。该Au‑GSH@TiO2@PDMS复合材料有效的提高了Au‑GSH光稳定性,有效地解决了传统金属纳米团簇光致团聚的问题。
本发明涉及一种基于裂纹失效机理的纳米SiO2改性复合材料中纳米SiO2含量的优选方法。主要包括:计算得出球形纳米SiO2张量的分量;分别构建基体和纳米SiO2的体积分数表达式;分别计算得出基体和纳米SiO2的模量张量的分量;构建纳米SiO2改性复合材料模型;计算得出改性复合材料的泊松比;计算得出改性复合材料裂纹应力强度因子,得出使改性复合材料达到最佳改性效果所需要的纳米SiO2粒子质量分数。本发明提供的方法通过改性复合材料的裂纹应力强度因子与纳米颗粒含量的关系对纳米SiO2粒子的含量进行优选,有效地通过调整纳米SiO2的含量来得到增强纳米SiO2改性复合材料的韧性。
本发明提供了一种碳纤维复合材料、其制备方法及碳纤维复合材料板材。该碳纤维复合材料包括碳纤维复合材料本体,碳纤维复合材料还包括复合过渡层,复合过渡层与碳纤维复合材料本体的表面接触设置,形成复合过渡层的原料包括热固性树脂和固化剂,且热固性树脂的官能度大于等于3。利用上述复合过渡层能够改观其表面结构,增加碳纤维复合材料本体的表面极性,进而提高了碳纤维增强复合材料本体与涂料之间粘合力,易于碳纤维增强复合材料在涂装时的工业化实现。
本发明涉及一种锰氧化物@Ni‑Co/石墨碳纳米复合材料的制备方法,具体包括如下步骤:将Ni‑CoPBA进行退火处理,加入KMnO4后进行水热反应,随后将反应产物进行二次煅烧处理,最终得到锰氧化物@Ni‑Co/石墨碳复合材料;本发明巧妙地将Ni‑CoPBA进行煅烧衍生出C,通过C与KMnO4之间的氧化还原反应以及二次煅烧处理,有效地合成出锰氧化物@Ni‑Co/石墨碳复合材料;所制备材料兼具Ni‑CoPBA和锰氧化物的优异特性,可作为性能优异吸波剂应用于电磁污染的治理;相比于常规的制备方法,本发明减少试剂耗材的使用,符合绿色环保的理念。
本申请实施例公开了一种钛酸锂/过渡金属复合材料、电极材料、电池及制备方法,所述钛酸锂/过渡金属复合材料为钛酸锂和纳米级过渡金属单质的复合材料。本申请实施例提供的的钛酸锂/过渡金属单质复合材料在充放电过程中具有两种储能机制,分别为过渡金属单质纳米颗粒基于自旋电容的界面电荷存储以及钛酸锂材料基于锂离子嵌入脱出机理。该材料具有高能量密度,良好倍率性能和较好的循环稳定性,是具有广阔应用前景的电极材料。
本发明公开了一种Vi-POSS-ZnO/EP抗紫外增韧复合材料及其制备方法,按照重量份数其原料组成为:100份的环氧树脂、0.1-3份的改性纳米氧化锌、0.1-10份的八乙烯基倍半硅氧烷和3份的2-乙基-4甲基咪唑;其中,环氧树脂作为基体,改性纳米氧化锌作为改性剂,八乙烯基倍半硅氧烷作为增韧剂,2-乙基-4甲基咪唑作为固化剂。本发明以八乙烯基倍半硅氧烷作为增韧剂加入到环氧树脂基体中,可有效改善复合材料的韧性,改性纳米氧化锌可有效改善复合材料的抗紫外老化能力,上述原料结合制备得到的复合材料抗紫外老化性能好,抗冲击机械性能强,本发明复合材料制备工艺简单,原料廉价,有利于实现工业化生产。
本发明涉及一种用于由纤维复合材料制造中空梁(1)的方法,一种构成为中空体的芯(5)及其应用和由纤维复合材料制成的中空梁(1)的应用。
本发明属于电催化材料技术领域,具体地说涉及一种氮/氧自掺杂多孔生物炭的制备方法及应用。
中冶有色为您提供最新的山东青岛有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!