本发明提供了一种聚合物基金属气凝胶复合热界面材料及其制备方法,所述聚合物基金属气凝胶复合热界面材料,其特征在于:其包括金属气凝胶形成的骨架,以及填充并包覆所述骨架的复合高分子聚合物,所述复合高分子聚合物包括聚合物和导热填料;所述金属气凝胶的材料包括金属纳米线。采用本发明技术方案的聚合物基金属气凝胶复合热界面材料具有优秀的热导率,基于金属气凝胶构筑的骨架结构能够发挥优异的导热性能,降低热界面复合材料的界面热阻;由于纳米材料的尺寸效应在低温下可以与散热器、发热器件表面发生冶金互连,进一步提高了导热胶的热导率。
本申请公开了一种染料敏化太阳能电池对电极材料及其制备方法和应用。本申请的染料敏化太阳能电池对电极材料,包括基底和吸附在基底表面的氧化锡纳米条阵列,吸附氧化锡纳米条阵列的基底表面还吸附有碳纳米片层;并且,氧化锡纳米条阵列与碳纳米片层的接触面上,氧化锡纳米条中的Sn与碳纳米片层中的C形成Sn‑O‑C配位键。本申请的染料敏化太阳能电池对电极材料,采用氧化锡/碳纳米片复合材料替换铂电极,为染料敏化太阳能电池提供了一种新的非铂电极。本申请的染料敏化太阳能电池对电极材料具有优良的导电性和电催化性能,并且和基底有着很好的附着力,稳定性好;所制备的太阳能电池具有优良的光电转换效率。
本发明提供的一种扬声器用防短路绝缘复合纸带的制作方法,其采用多种常用材料复合成型,结合了每种材料的优点。复合材料采用纸类材料或采用布类材料,加上具有优良绝缘性能的聚酰亚胺薄膜,具有优良导电性能和焊接性能的铜片组合而成。其中,布类材料软,机械性能强,难撕裂,表面粗糙,附着力强,胶粘剂粘连之后,纤维之间透气,做功过程中的挥发物易散出,聚酰亚胺薄膜绝缘性好;纸类材料轻,纤维之间透气,做功过程中的挥发物易散出。纸类和布类是组合材料中的主材,根据实际生产需求可在两者中进行替换。复合成型工艺制得的带状材料的粘接强度高,绝缘性强。
本申请实施例提供一种生物墨水,用于3D打印,包括N‑丙烯酰基甘氨酰胺、高分子聚合物和纳米黏土,其中,所述高分子聚合物包括改性明胶、双键修饰的海藻酸盐、双键修饰的胶原和双键修饰的透明质酸中的一种或多种;所述N‑丙烯酰基甘氨酰胺和所述高分子聚合物的质量比为(0.1‑10):1。该生物墨水配方简单,由所述生物墨水固化形成的复合材料网络交联度高,结构稳定,机械性能强,以及具有高生物相容活性。本申请还提供了由该生物墨水经3D打印形成的小口径管状结构支架及其制备方法和应用。
本发明涉及低密度复合材料技术领域,是一种表面复合玻璃纤维的低密度材料及其制备方法,前者通过将玻璃纤维进行浸泡预处理,再将低密度材料与浸泡后的玻璃纤维在适宜相同温度下粘接并干燥后得到表面复合玻璃纤维的低密度材料。本发明所述表面复合玻璃纤维的低密度材料,其通过采用适宜的粘接温度以及所述粘接处理,使低密度材料与玻璃纤维粘接融合过程中,产生的热应力减小,使玻璃纤维更加牢固地粘接在低密度材料表面,通过所述粘接工艺,能够提高材料的绝缘性、耐热性、抗腐蚀性和机械强度,并且采用本发明的制备方法能够提高玻璃纤维与低密度材料的粘接牢固度,使玻璃纤维与低密度材料不易分离。
本发明涉及一种ABS专用增强聚丙烯功能树脂和ABS树脂。ABS专用增强聚丙烯功能树脂其由聚丙烯与丙酸酸酯单体制备而成,其中,聚丙烯通过电子加速器辐照,电子加速器的能量级别为3.0MeV,辐照剂量为100~300KGy,辐照后的聚丙烯与丙烯酸酯单体进行混合。本发明的有益效果为:本发明通过将聚丙烯粉料添加一定比例的丙烯酸酯单体(AA),采用3.0电子加速器进行辐照,单体实现与聚丙烯接枝反应,从而获得增强聚丙烯功能树脂,大大提高了产品的极性,其作为基材用于ABS树脂中或填充增强复合材料及聚烯烃共混物中,可明显增加材料的相容性和界面粘结程度,从而提高材料综合性能。
本发明公开了一种燃料芯块的制造方法以及燃料芯块,燃料芯块的制造方法包括:S1、根据质量百分比称取以下各原料:氧化钇0‑8%、氧化铝0‑10%、氧化硅0‑8%、碳化锆5‑80%,余量为碳化硅;S2、将原料与乙醇混合后,加入聚乙烯亚胺,球磨混合均匀,形成混料;S3、取5‑20%的混料均匀混合在乙醇中形成浆料,将浆料喷洒在滚动的TRISO颗粒表面,烘干形成待压粉料;S4、将待压粉料压制形成内核素坯;S5、取步骤S2中剩余的混料,压制形成为管体素坯;S6、将内核素坯装配到管体素坯中,压制,致密化烧结,制得燃料芯块。本发明采用SiC/ZrC复合材料作为燃料芯块的基体,提高燃料芯块的高温稳定性;利用ZrC可溶于强酸、强碱的特性,降低乏燃料芯块后处理难度,有利于燃料芯块循环利用。
本发明提供了一种金属纤维复合管材及其制备方法,所述金属纤维复合管材包括第一空心金属管材,设置在第一空心管材内的第二空心金属管材及位于第一空心金属管材和第二空心金属管材之间的纤维层。本发明的复合材料具有高的抗拉强度和低的密度,适合对抗拉强度要求较高且对重量要求较高的领域,如汽车等领域。
本发明公开了低温锂离子电池。该低温锂离子电池包括:正极片、隔膜、负极片和电解液,正极片包括三元镍钴锰酸锂材料,三元镍钴锰酸锂材料为团聚体材料和类单晶材料的复合材料,团聚体材料的中值粒径小于类单晶材料的中值粒径;负极片包括碳材料,碳材料包括人造石墨和天然石墨,人造石墨和天然石墨均为碳包覆的二次颗粒;电解液包括溶剂、锂盐和添加剂,溶剂包括EC、DEC、EMC和辅助溶剂,溶剂为四元或四元以上的复合物,锂盐包括LiPF6、LiFSI和LiPO2F2,添加剂包括VEC、DTD和GBL。该低温锂离子电池在低温下具有良好的充放电性能、较高的安全性和较高的能量密度,能很好的适用于低温环境。
本发明公开了一种双组分蜂窝状气凝胶材料,所述双组分蜂窝状气凝胶材料包括多个微孔以及形成于所述微孔之间的孔壁,所述微孔的孔径为微米级别,所述孔壁包括纤维素以及碳纳米管,所述孔壁的厚度小于5μm,所述双组分蜂窝状气凝胶材料的孔隙体积比大于90.0vt%。本发明还提供了所述双组分蜂窝状气凝胶材料的制备方法,以及应用所述双组分蜂窝状气凝胶材料,将其作为增强材料与聚合物基体复合制备的各向异性聚合物复合材料。
一种生物检测芯片及制作方法,包括如下步骤:选取用于芯片制作的基板材料;对基板进行成型,在基板上形成微流体通道结构;形成与基板材料相复合的微流体通道内表面涂层;将盖板与所述基板键合,对所述微流体通道进行密封,形成闭合的流体通路;对盖板和基板进行切割,分割成独立的芯片。本方法是一种基于复合材料的新型芯片制作方法,可以实现低成本批量化的芯片加工,大幅降低检测成本,用于生物化学分析、免疫检测及分子诊断等。
本发明公开一种掺杂的ZnO材料及其制备方法与丙酮传感器,其中,方法包括步骤:将锌源与水混合,搅拌直至锌源溶解,之后加入碱源和无水乙醇,搅拌直至得到澄清溶液;向澄清溶液中加入可溶性金源或者可溶性钯源,将得到的溶液转移至微波反应仪中进行反应;反应结束后依次进行冷却、洗涤、干燥及退火,得到Au或Pd掺杂的ZnO材料。本发明采用一步微波水热法直接将Au或者Pd掺杂到ZnO材料中,制备操作容易,过程简单。与普通物理掺杂相比,采用本发明方法掺杂剂分散的更均匀,合成出的复合材料中各组分可以实现在分子层面上接触。本发明中的基于Au或Pd掺杂的ZnO材料的丙酮传感器对低浓度的丙酮展现出较好的气敏特性。
本发明提供了一种陶瓷燃料电池,所述陶瓷燃料电池包括依次设置的多孔金属支撑层、多孔阳极功能层、致密功能层和多孔空气极功能层,其中,所述多孔阳极功能层、致密功能层采用相同的功能材料制成,所述功能材料为半导体材料和离子导电材料的纳米复合材料,所述半导体材料为掺杂有过渡金属和/或稀土金属的氧化还原晶体结构稳定的半导体材料。
本发明属于传感器技术领域,具体涉及一种柔性压力传感器及其制备方法。该柔性压力传感器,包括依次层叠设置的第一柔性基底、第一柔性导电层、第二柔性导电层和第二柔性基底,所述第一柔性导电层包括周期性排列的第一凸起阵列,所述第二柔性导电层包括周期性排列的第二凸起阵列,且所述第一凸起阵列和所述第二凸起阵列相邻设置;所述第一柔性导电层和所述第二柔性导电层均含有导电复合材料。该柔性压力传感器具有高灵敏度、快速的响应时间和良好的稳定性的特点。
本发明公开一种锂硫电池正极材料的制备方法,涉及锂硫电池技术领域。其包括以下步骤:S1、棉花的浸渍:将棉花浸泡在含氯化锌的盐酸溶液中密封保温,之后去除多余溶液,对混合物干燥并保温处理,得到灰色或棕色固体;S2、多孔碳基质的制备:对所述固体依次进行碳化处理和酸化处理,之后洗涤、干燥及煅烧,得到多孔碳基质;S3、碳‑硫复合材料的制备:将所述多孔碳基质与单质硫共热合成锂硫电池正极材料。同时,本发明还公开了采用上述制备方法制备而成的锂硫电池正极材料及锂硫电池。相对于现有技术,采用本发明的方法获得的锂硫电池正极材料具有高载硫量、高容量及良好的循环性能,且工艺简单,成本低。
本发明提供一种超声波带电局部放电测试仪传感器延长杆,包括:第一探棒、第二探棒、第一电木、第二电木;第一探棒由玻璃纤维材料制成,其一端呈半圆形,直接与被测物体连接,其另一端呈直线形,与置于第一电木中的超声波传感器连接;第一电木由绝缘木质材料制成,超声波传感器置于其中,其一端与第一探棒连接,另一端与第二电木连接;第二电木由绝缘木质材料制成,其一端与第一电木连接,另一端与第二探棒连接;第二探棒由绝缘复合材料制成,其一端与第二电木连接。本发明的超声波带电局部放电测试仪传感器延长杆应用于生产实践,将会大幅提高超声波带电局部放电测试工作的工作效率,减轻试验人员的工作负担,减少工作中存在的安全隐患。
本发明公开了一种表面改性芳纶纤维及其制备方法,对芳纶纤维进行接枝处理,得到表面带有异氰酸酯基、氨基和/或羟基等极性基团的芳纶纤维。本发明先用二异氰酸酯与多缩乙二醇反应生成含有异氰酸酯端基的聚氨酯分子链,再依次与三醇胺类化合物和二胺类化合物发生扩链反应和偶联反应制得超支化聚氨酯;然后对芳纶纤维依次用二异氰酸酯化合物和上述制备的超支化聚氨酯接枝改性得到一种表面接枝有大量基团的芳纶纤维。本发明所制备的改性芳纶纤维表面基团活性大,提高了芳纶纤维表面粘结性,这些活性基团能与多种树脂形成化学键,增强了芳纶纤维与树脂复合材料的界面强度。
本发明属于复合材料领域,具体涉及一种纳米复合环保水性地坪漆,包括以下重量份的原料:硅丙涂料70~80份、硅溶胶10~20份、锂基固化剂5~10份。本发明纳米复合环保水性地坪漆的地坪涂膜更加耐磨、耐冲击、耐候,且成本低廉,使用寿命长,符合环保要求。
本发明提供了一种抗菌塑料及其制备方法,所述抗菌塑料包含质量分数为45-95%的聚对苯二甲酸乙二醇酯树脂、4-50%的甲壳素纤维、0.2-3%的相容剂、0.1-0.5%抗氧剂。本发明具有如下有益效果:本发明的高填充甲壳素纤维增强抗菌PBT塑料,抗菌剂为天然生物纤维甲壳素,在增强材料机械性能的同时,还具有良好的抗菌性能,满足长效抗菌的要求,并且无毒、环保。本发明的高填充甲壳素纤维增强抗菌PBT塑料的制备方法,采用双螺杆挤出机进行熔融混合反应挤出造粒,整个工艺简单、环保。本发明的高填充甲壳素纤维增强抗菌PBT塑料可以得到高达50%填充的PBT复合材料。
本发明公开了一种有机链段修饰改性氧化石墨烯的制备方法:先将石墨在浓硫酸、硝酸钠、高锰酸钾等强氧化剂作用下氧化,然后将其在有机溶剂中进行超声分散制备氧化石墨烯的分散体系;再利用二异氰酸酯与二元醇反应,用羟基丙烯酸酯封一端,利用该有机链段中的NCO基团与上述制备的氧化石墨烯反应,制备有机链段修饰改性的氧化石墨烯。该有机链段中含有可聚合的双键,有利于修饰改性后的氧化石墨烯与其它有机材料的交联聚合形成具有特殊性能的复合材料。
本发明涉及一种电池引出线,是由钢、镍、铜三种材料呈带状依次叠合后冷轧而成。所述电池引出线制造工艺包括:1)将钢、镍、铜三种材料分别按所需的厚度冷轧成带状;2)将上述各带状材料分别进行表面处理;3)将三种带状材料依次叠合在一起,再冷扎压制使其达到引出线所需的厚度;4)退火处理;5)将引出线分切成所需的宽度。本发明充分利用了上述各材料所具有的特点,其电导率、热导率、电阻及与极耳和盖板之间的焊接性能与纯镍带材料相差不大,且优于铜带或铜镍复合材料,可代替原有的纯镍材料,降低了生产成本,同时也解决了镍材料稀缺的问题。本发明制造工艺可不改变三种材料原有的物理特性,相互结合致密,有效地保证了产品的使用性能。
本发明公开一种仿清水混凝土骨料及其制备方法,其中,该仿清水混凝土骨料,由包含硅酸盐水泥、石英砂、灰钙粉、钛白粉、羟丙基甲基纤维素、木质纤维、防霉剂以及丙烯酸胶粉的组分制备而成,各成分的组分比如下:硅酸盐水泥15~25份、石英砂30~40份、灰钙粉5~15份、钛白粉2.5~7.5份、羟丙基甲基纤维素0.1~1份、木质纤维0.1~1份、防霉剂0.1~1份以及丙烯酸胶粉10~20份。本发明的技仿清水混凝土骨料具有清水混凝土的外观效果,以及具有水泥基材料的耐老化性能,同时,在无机材料与聚合物之间的协同作用下,可增强聚合物/无机颗粒复合材料的性能。
一种表面处理的碳纤维增强PC/PBT合金及其制备方法.其合金包括如下质量份数的组份:PC树脂55‑75份、PBT树脂15‑35份、碳纤维10‑15份、MBS树脂3‑6份、丙烯酸类聚合物型扩链剂ADR‑4368 0.5‑2份、AX‑8900 0.1‑1份、偶联剂0.2‑1份、抗氧剂0.2‑0.6份、有机硅类润滑剂0.3‑0.8份和助剂0.3‑1份。本发明由于采用了PC树脂、PBT树脂、碳纤维、MBS树脂、丙烯酸类聚合物型扩链剂ADR‑4368、AX‑8900、偶联剂、抗氧剂、有机硅类润滑剂和助剂,将流动性好的PBT树脂掺杂在流动性差的PC树脂中,改善了PC树脂的加工性,对碳纤维进行了表面处理,提高了其在树脂中的浸润性,增加了两者的相容性,从而提高了复合材料的力学性能,具有耐高温、拉伸强度高、弯曲强度高、高模量、高抗冲性、优异的流动性、耐化学品性和应用领域广等优点。
本发明公开了一种导热、阻燃碳纳米管材料及其制备方法,其中导热、阻燃碳纳米管材料的制备由双酚A二缩水甘油醚环氧树脂(DGEBA环氧树脂)和氨基化碳纳米管(MWCNTs‑NH2)进行反应,其中胺基官能团能够与环氧基团发生开环反应,并促进碳管与环氧树脂基体之间形成较强的界面结合,从而提高复合材料的力学和热力学性能。氨基化碳纳米管加入后环氧树脂的总释热量减少,释烟量增加,阻燃性得到一定程度的提高。
一种石墨烯掺杂的钴酸锂正极材料及其制备方法,包括以碳酸锂、四氧化三钴和液态聚丙烯腈低聚物作为原料,通过研磨、喷雾干燥、预加热、高温煅烧、搅拌、喷雾干燥、预氧化、二次高温煅烧处理,制备出石墨烯掺杂的钴酸锂正极材料。通过本方法所制得的石墨烯掺杂的钴酸锂正极材料,石墨烯的掺杂有效地控制晶粒的生长,材料内部晶粒有序排列,堆积较为密实,维持了电极材料的结构稳定性;同时石墨烯优异的导电性能加快了复合材料的电子迁移速率,有效提高电极材料的导电性;此外,液态丙烯腈低聚物在烧结过程中可以形成石墨烯结构,稳定钴酸锂正极材料在充放电过程中的结构,使材料在大倍率充放电条件下仍具有良好的循环稳定性。
本发明属于医用高分子材料表面改性领域,提供了一种利用聚苯胺纳米纤维对聚醚醚酮表面进行改性的方法,具体说,是利用稀释聚合法合成聚苯胺纳米纤维,在PEEK片上原位构筑聚苯胺纳米纤维,将PEEK表面生物活性化的同时在其表面形成一层纤维网络结构的方法。PEEK/PANI复合材料表现出较好的生物相容性,骨细胞在基底材料上能够在3h内贴壁粘附且生长良好。
本发明涉及金属复合材料领域,公开了一种金属复合板材及其制备方法,该金属复合板材由两片金属板夹持结合泡沫金属纤维层而成,其中,所述泡沫金属纤维层由泡沫金属、第一纤维、第二纤维、第三纤维以及填料形成;所述第一纤维穿插于所述泡沫金属长度方向上的两个端面,所述第二纤维穿插于所述泡沫金属宽度方向上的两个端面,所述第三纤维穿插于所述泡沫金属厚度方向上的两个端面,且所述第一纤维、所述第二纤维和所述第三纤维相交形成三维立体网状结构;所述泡沫金属的至少部分孔隙被填料填充。本发明提供的金属复合板材,上下金属板与中间层的层间结合力较高。
为解决现有技术中采用两步法制造电子产品机壳,导致难以保证产品一致性,影响良率的问题,本发明提供了一种电子产品外壳的成型方法。包括如下步骤:将包括纤维和热塑性塑料的复合材料组合物置于模具的型腔中,将模温快速升温,使热塑性塑料和所述纤维融合,然后快速降低模温,得到预固化外壳本体;然后向具有所述预固化外壳本体的所述模具型腔中注入熔融塑胶料,在预固化外壳本体的内表面形成内部结构,经保压和冷却,一体成型得到电子产品外壳。本发明不存在需对预固化外壳本体重新定位的问题,保证了产品的一致性,良率得到进一步提高。同时,可有效缩短成型周期,提高生产效率。且一体化成形后预固化外壳本体与各内部结构的结合力更好。
发明提供了一种石墨/硅复合负极材料的制备方法,采用机械化学与高温热炭还原相结合的方法制备石墨/硅负极材料。该负极材料制备方法包括:1、将石墨与硅盐进行混合均匀;2、将固体碱性物质加入步骤1的混合物进行机械化学反应;3、将步骤2中的混合物加入一定量的有机碳源进行混合;4、将步骤3的混合物在马弗炉内进行烧结;5、将步骤4的石墨/硅混合物进行洗涤、过滤、干燥制得石墨/硅复合材料。采用该方法制备的负极材料可明显提高电池的容量和循环性能。
本发明涉及一种成型滚轮,其包括一个原始轮及一个成型膜。该原始轮包括一个外圆周面。该成型膜由可挠性的有机-无机复合材料制成,并固定在该外圆周面上。该成型膜包括一个成型面,该成型面上设置有微结构压印图案。由于平面加工比曲面加工简单很多,因此本发明的成型滚轮可更精确地控制该微结构压印图案的精度,从而提高该成型滚轮制造出的光学薄膜的生产效率及产品良率。本发明还涉及一种成型滚轮的制造设备及制造方法。
中冶有色为您提供最新的广东深圳有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!