一种基于钙铟硫八面体纳米块或钙铟硫/ZnO异质结复合材料的光电探测器及其制备方法,所述钙铟硫为三维八面体纳米块结构,在钙铟硫/ZnO异质结复合材料中,ZnO为二维纳米片结构,均匀紧密地分布在CaIn2S4八面体纳米块表面。以制备的CaIn2S4八面体纳米块和CaIn2S4/ZnO异质结复合材料为工作电极,通过热封膜将其与对电极连接,并在中间注入聚硫电解质或去离子水,分别组装为CaIn2S4纳米块和CaIn2S4/ZnO异质结光电探测器。所制备探测器可在室温下实现紫外到可见光的宽光谱探测,且能够在无外加偏压下工作。本发明合成了三维CaIn2S4八面体纳米块和具有独特结构的CaIn2S4/ZnO异质结复合材料,并基于其分别制备了高性能的光电探测器,拓展了CaIn2S4纳米材料在光电探测领域的应用。
本发明提出了一种工字型截面交叉结构的复合材料成型装置及成型方法,属于复合材料成型领域。解决了现有工字型截面交叉结构的复合材料工件难以成型的问题。它包括内侧成型机构和外模,所述内侧成型机构包括多个内侧成型单元,每个内侧成型单元均包括芯模和内模,所述芯模为矩形结构,所述内模设置在芯模的四周,并与芯模外侧固定相连,所述多个内侧成型单元中的内模相互连接组成交叉结构,所述外模的数量为两个,两个外模分别设置在成型机构的顶面和底面。它主要用于工字型截面交叉结构复合材料工件的成型。
本发明涉及碳纳米管/硼化铪纳米复合陶瓷材料及其制备方法。制备方法包括:(1)将纳米硼化铪粉末与金属离子溶液混合,调节混合溶液的pH,直至金属离子完全沉淀,将沉淀物依次进行洗涤、干燥、研磨和煅烧,得到金属氧化物/硼化铪复合材料;(2)将金属氧化物/硼化铪复合材料还原成金属/硼化铪复合材料;(3)以金属/硼化铪复合材料作为催化剂,通入碳源气和保护气,通过化学气相沉积法在硼化铪的表面原位生长碳纳米管,制得碳纳米管/硼化铪复合粉末;(4)将碳纳米管/硼化铪复合粉末进行放电等离子体烧结,得到碳纳米管/硼化铪纳米复合陶瓷材料。采用本发明制备方法不但可以提高材料的断裂韧性,而且还能提高材料的硬度和弯曲强度。
一种NiFe2O4/Fe2O3磁性复合材料的制备方法,它涉及NiFe2O4/Fe2O3磁性复合材料的制备方法。它是要解决现有的非均相电芬顿催化剂的制备方法复杂的技术问题。本方法:将草酸加入到硫酸亚铁和硫酸镍的混合溶液中,形成沉淀,将沉淀洗涤、干燥后,得到NiFe(C2O4)x前驱体;将前驱体置于坩埚中放入马弗炉内烧结后,降至室温,得到NiFe2O4/Fe2O3磁性复合材料。本发明的NiFe2O4/Fe2O3磁性复合材料具有立方体结构,对罗丹明B的降解率可以达到90%以上,重复使用时稳定性高,可用于电芬顿体系作催化剂。
TiO2/PU-EP复合材料的制备方法。热固性环氧树脂是高分子聚合物基体材料领域中应用最早也是最广泛的复合材料,但未改性的环氧树脂聚合物在性能上的某些缺点使得其在很多重要领域的应用受到局限。本发明方法包括:(1)纳米TiO2进行表面改性:采用硅烷偶联剂KH-550、KH-560、KH-570和钛酸酯201(TCA201)分别对纳米TiO2进行表面改性;(2)聚合物PU-EP基体的制备:采用环氧树脂EP作为反映基体,以甲基四氢苯酐MeTHPA为固化剂,聚氨酯PU为增韧剂,制备PU-EP聚合物;(3)TiO2/PU-EP复合材料的制备。本发明用于TiO2/PU-EP复合材料的制备。
一种复合材料,按以下重量份数比制备而成,卤水15-20份、氧化镁30-40份、丙烯酸乳液5-10份、炉灰20-30份、色素3-5份。使用方法,(1)将各组分按照计量标准称重配好,充分混合均匀制得复合材料?;(2)将模具里均匀涂抹上一层汽机油,倒入复合材料,自然晒干,即可。本发明的新型复合材料所制得的建筑装饰品具有很好的防火性和阻燃作用。
四棱锥树脂基点阵夹芯泡沫复合材料平板及制造方法,本发明涉及四棱锥树脂基点阵夹芯泡沫复合材料平板及制造方法,本发明为了解决现有技术中对泡沫夹心复合材料增韧效果,未缝纫的泡沫夹芯材料易分层,泡沫芯夹层结构的刚度弱和强度差,且泡沫和面板之间易产生缺陷。Z向增强泡沫芯夹层复合材料,增加了泡沫盒面板的连接,但其抗剪性能较差,成本高的问题,所述平板包括上面板、下面板、点阵芯子和泡沫材料板,所述上面板、下面板和泡沫材料板均为长方形板,泡沫材料板水平设置,点阵芯子插装在泡沫材料板上,且上面板铺设在泡沫材料板的上端面上,下面板铺设在泡沫材料板的下端面上,本发明属于工程材料制备、结构设计领域。
本发明公开了一种基于磷化镍空心结构复合材料的制备方法及应用,所述方法步骤如下:(1)采用水热反应制备Ni‑空心结构材料;(2)将干燥后的Ni‑空心结构材料与磷源混合,置于管式炉中煅烧磷化,获得磷化镍空心结构材料;(3)将步骤(2)获得的磷化镍空心结构材料与升华硫混合,研磨均匀后,加热至熔融并随后冷却到室温,得到基于磷化镍空心结构复合材料。本发明制备的复合材料拥有大尺度的空心结构,从而对硫有明显的限域作用,显著抑制多硫化锂的穿梭效应,此外高电导性的复合材料提高了硫的电化学反应活性,使材料兼顾有长循环寿命和高能量密度。
复合材料电缆加强芯生产专用牵引力检测装置,涉及压力测量领域,特别是涉及一种复合材料电缆加强芯生产专用牵引力检测装置。本实用新型是为了解决现有的复合材料拉挤机中没有实时检测牵引力的装置,根据手持拉力器测定的牵引力大小调节产品生产时的挟持力,人为因素大,影响产品性能和生产效率的问题。本实用新型中模具加热夹紧装置通过直线轴承与水平导杠的两端滑动连接,当牵引力作用于拉挤模具时,设置于模具加热夹紧装置端面和支座侧板之间的两组测力机构受压力发生变形并产生相应电信号,此电信号经放大器放大后输入给压力检测仪表。本实用新型尤其适用于在复合材料拉挤产品的生产过程中实时检测并调节牵引力大小。
本发明提供了一种碳化硅陶瓷复合材料与镍基高温合金的连接方法及接头,涉及材料焊接技术领域,所述碳化硅陶瓷复合材料与镍基高温合金的连接方法包括将CuTi膏状钎料涂覆在除杂后的碳化硅陶瓷复合材料的表面,依次经过热处理、清洗及干燥后,得到第一待焊材料;将BNix膏状钎料涂覆在除杂后的镍基高温合金表面,得到第二待焊材料;将步骤S1得到的所述第一待焊材料放置在步骤S2得到的所述第二待焊材料的上方,用模具夹紧,经热处理后,得到碳化硅陶瓷复合材料与镍基高温合金的连接接头。本发明获得的接头的室温剪切强度最大可达50MPa,高温剪切强度最大可达55MPa。
本发明提供了一种用于实现纤维复合材料腐蚀‑蠕变耦合的试验装置与方法,装置包括腐蚀系统和蠕变系统,腐蚀系统包括储液仓、恒温恒湿箱、进水管、出水管、装有腐蚀溶液的烧杯和水泵,储液仓用于模拟腐蚀环境并固定在纤维复合材料筋上,纤维复合材料筋的上下两端均伸出储液仓设置,在储液仓外部设有一测量储液仓内的纤维复合材料筋蠕变位移的千分表,进水管的一端与水泵连接,另一端与储液仓的上部连通,出水管的一端与储液仓的下部连通,另一端伸入装有腐蚀溶液的烧杯内;蠕变系统包括位移传递杆、位移放大杆、重物和长方体框架。本发明设计简单合理、加工方便,经济效益好,可长期高温腐蚀蠕变复杂环境的模拟,可靠性高,应用范围广。
本发明涉及聚乳酸基复合材料领域,公开了一种轻质木质纤维/聚乳酸复合材料,按质量份数计,所述材料包括如下成分:聚乳酸40份~80份、木质纤维10份~50份、发泡剂1份~3份、扩链剂0份~6份、增韧剂0份~10份、润滑剂0份~3份。本发明有聚乳酸基复合材料存在韧性差、应用范围窄,使用寿命低的问题,制备得到的轻质木质纤维/聚乳酸复合材料绿色环保可降解,成本低,力学性能优异,使用寿命长。
一种大型主承力复合材料结构的制备方法及所用成型模具,属于复合材料结构的制备领域,本发明为了解决现有技术在复合材料结构件制备中由于缺少适当的成型模具和较为复杂的工艺,极大的影响了制备的效率,同时还增加了产品在成型过程、成型后期产生缺陷的概率的问题,本发明所述成型模具中上压板、分瓣模组件和下压板由上至下依次设置,且上压板和分瓣模组件通过连接件可拆卸连接,分瓣模组件和下压板通过连接件可拆卸连接,周向加固组件套设在上压板和下压板的外圆面上,且周向加固组件与上压板和下压板紧密贴合设置,同时利用上述模具进提出一种新的制备方法,本发明主要用于大型主承力复合材料结构的制备。
本发明提出了一种复合材料螺旋桨的振动噪声数值预报方法,所述方法包括以下步骤:步骤一、基于建立的螺旋桨几何模型,计算得到空泡数值模拟结果;步骤二、基于计算声学软件构建复合材料螺旋桨的声学计算模型,导入步骤一中得到的空泡数值模拟结果,计算出声音接收点处的声音压强信号以及分析空泡辐射噪声在不同位置处的衰减变化规律。本发明能够很好地预测螺旋桨振动噪声辐射情况,为低噪音螺旋桨设计提供参考,该方法简单,成本低,可大大降低复合材料螺旋桨在研发时的时间和成本,提高工作效率,满足复合材料螺旋桨在研发时的实际使用要求。
一种均匀分散的碳纳米管/沥青复合材料制备方法,本发明涉及碳纳米管/沥青复合材料制备方法领域。本发明要解决碳纳米管在沥青中易团聚,二者相容性差的技术问题。方法:首先将基质沥青加热熔融保持流动态,将碳纳米管泡沫加入熔融的基质沥青中,冷却后即可获得碳纳米管均匀分散的碳纳米管/沥青复合材料。该方法利用了碳纳米管泡沫具有很多纳米尺寸孔隙和很强毛细管吸力的优点,能有效的将熔融的基质沥青吸入到孔隙结构中,解决了碳纳米管在沥青中团聚和相容性差等瓶颈问题,提高了碳纳米管对沥青的增强效果。本发明制备的碳纳米管/沥青复合材料应用于桥面铺装和路面铺装材料领域。
环氧树脂/碳纳米管/纳米镍复合材料的制备方法;属于复合材料领域。本发明目的在于对环氧树脂增韧的同时提高导电性。本发明方法是现在在碳纳米管上负载纳米镍粉;然后加入环氧树脂中,乳化分散,得到环氧树脂/碳纳米管/纳米镍混合物;将步骤二制得的环氧树脂/碳纳米管/纳米镍混合物与固化剂PA‑651分别预热后混匀,再倒入预热好的涂有高真空硅脂的聚四氟乙烯模具中,放入烘箱中固化,得到环氧树脂/石墨烯/纳米镍复合材料。本发明方法制得的环氧树脂/碳纳米管/纳米镍复合材料就具有了优良的导电性和优异的机械性能,使得其在胶粘剂、电子仪表、航空航天、涂料、电子电气绝缘材料等领域应用更为广泛。
一种高性能氮化硅铝基复合材料及其制备方法,它涉及一种高性能氮化硅铝基复合材料及其制备方法。本发明是要解决常规方法增强体添加含量受限的问题。高性能氮化硅铝基复合材料按体积分数由5%~45%Si3N4增强体和55%~95%铝基体制成。方法:一、计算粉体质量并称量;二、粉体球磨混合;三、粉体过筛;四、预压;五、在保护气氛下进行放电等离子体烧结(SPS)。本发明用于制备铝基复合材料。
SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料及其制备方法,它涉及超高温陶瓷复合材料及其制备方法。本发明解决了现有的ZrC基超高温陶瓷致密度低、成本高的技术问题。SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料由SiC纳米颗粒、SiC晶须和ZrC基体组成;SiC纳米颗粒和SiC晶须作为增强相存在于ZrC基体中。制备方法:将SiC晶须经超声波分散后与SiC纳米颗粒和ZrC粉末混合,再球磨、烘干,再将混合粉装入石墨模具中热压烧结,得到SiC纳米颗粒及SiC晶须混杂增韧ZrC基超高温陶瓷复合材料,其致密度为96%~100%,成本低,可用于固体火箭发动机或超高速飞行器。
本发明提供的是一种基于纳米石墨片的碳/碳复合材料及其制备方法。是由纳米石墨片与均匀附着在纳米石墨片表面的热解碳组成,纳米石墨片与热解碳的重量比为1∶0.1~50。本发明的制备方法包括制备纳米石墨片/高分子复合粉体、预氧化、碳化和活化步骤。本发明通过将纳米石墨片与高分子复合后,经预氧化、碳化、活化,在纳米石墨片表面引入无定形碳或微晶碳,制备基于纳米石墨片的高比表面积碳/碳复合材料,在保证其良好的导电性的同时,显著提高其比表面积。
一种具有编织纹理结构表面的复合材料太阳能边框型材,本实用新型涉及复合材料型材。本实用新型是要解决现有的太阳能边框型材的使用寿命短的技术问题,本实用新型的太阳能边框型材包括底板、第一侧板、第二侧板、顶板、支撑板、第一包覆层和第二包覆层;其中第一侧板和第二侧板平行固定在底板上,顶板固定在第一侧板的上端,支撑板固定在第二侧板的上端,支撑板同时与第一侧板的内侧固定连接;底板、第一侧板、第二侧板、顶板和支撑板均为纤维纱束增强复合材料板;在底板、第一侧板和顶板的外表面包覆第一包覆层;在底板上表面和第二侧板外表面包覆第二包覆层;第一包覆层和第二包覆层为纺织布增强复合材料层。可用于太阳能光伏领域。
本发明提供了一种形状记忆聚酰亚胺预浸料、复合材料及制备方法,涉及智能材料形状记忆聚合物技术领域。本发明所述的制备方法包括:S1、制备二胺溶液;S2、制备酐封端的大分子量聚酰胺酸;S3、制备形状记忆聚酰亚胺预浸料;S4、制备形状记忆聚酰亚胺复合材料。形状记忆聚酰亚胺预浸料和形状记忆聚酰亚胺复合材料由所述制备方法制备得到。本发明所述的制备方法制备工艺简单,操作流程清晰,应用本发明所述的制备方法制备的预浸料、复合材料回复输出力大,形状回复速度快,具有较好的形状记忆性能。
本发明涉及具有更高强度的PLA复合材料的制备方法。其原料组分PLA/PC的比例为20:80,玻璃纤维,偶联剂,增容剂。生产方法是一种用处理过的偶联剂的水解产物与PLA/PC和相容剂的复合材料混合均匀后,与玻璃纤维(GF)共混进行熔融挤出,形成玻璃纤维增强的PLA复合材料,将挤出的料条经传送带传输、空气冷切、切粒、包装。本发明直接挤出高强度可生物降解聚乳酸复合材料,生产工艺简单,产品强度良好,使用后可生物降解,对环境无污染,可以有效缓解环境问题和能源危机。
一种Kevlar纤维布增强聚脲基复合材料及其制备方法,它涉及一种Kevlar纤维布增强聚脲基复合材料及其制备方法。本发明是要解决单一聚脲弹性体材料强度较低以及Kevlar纤维布服役时纤维横向拔出导致的材料失效的问题。Kevlar纤维布增强聚脲基复合材料以Kevlar纤维布作为增强体,以聚脲作为基体进行结合。一、制备聚脲弹性体;二、纤维布料裁剪并浸入聚脲;三、抽真空;四、纤维布铺陈;五、压铸。本发明制备的纤维布增强聚脲基复合材料可用于军用领域,如防弹装甲背板、飞机、导弹结构材料、防护头盔等;民用结构材料领域,如管道、墙板等建筑结构材料。
一种利用石墨烯海绵和聚二甲基硅氧烷进行复合制备高导电高电磁屏蔽柔性复合材料的方法;属于高导电柔性复合材料的技术领域。本发明要解决现有石墨烯海绵产品存在尺寸受到设备限制,柔性差问题。方法:一、制备氧化石墨烯海绵;二、用水合肼蒸汽对氧化石墨烯海绵还原;三、压缩;四、热处理;五、灌注PDMS溶液;六、真空固化,即得到PDMS/石墨烯海绵复合材料。本发明得到的PDMS/石墨烯海绵复合材料具有很好的柔性以及电磁屏蔽性能,电磁屏蔽性能可以达到可以达到59dB(2mm),而其电导率为1.03S/cm,具有在电磁屏蔽领域应用潜力;本发明的制备方法可广泛地应用于工业生产中。
本发明飞机复合材料结构件试验技术领域,特别是涉及一种复合材料板型件适航验证试验防失稳结构。本防失稳结构包括底座(1)、侧支座(4)、夹块(5)组成。侧支座(4)用T型槽螺栓(2)固定在底座(1)的T型槽(9)上,夹块(5)用螺栓(3)固定在侧支座(4)的长孔(8)上,整套防失稳结构通过T型槽螺栓(2)与加载装置(7)固定。本发明解决了不同规格的复合材料板型试验件需要重新设计试验工装的问题,实现了试验工装的通用。本防失稳结构成功应用于三个不同的飞机元件、细节件试验中,验证了飞机复合材料元件结构关于CCAR23R3第23.307、23.603、23.613条的符合性,为型号取证提供试验数据支持。
本发明提供了一种复合材料退除有机涂层的方法,其特征在于,包括以下步骤:将涂覆有有机涂层的复合材料置于塑喷机的工装上;调整塑喷机设备参数,保持喷嘴压力20~40psi(0.138-0.276Mpa),塑料喷射介质流量60~75m/s,用塑喷机将塑料喷射介质对复合材料进行喷射,直至复合材料的有机涂层完全去除。
本发明提出了一种用于复合材料拉挤成型工艺的三向夹持装置,属于夹持装置领域。解决了传统的拉挤设备夹持机构只能提供上下方向的夹持力,生产效率受影响的问题。它包括外框、上夹块、两个侧夹块和涨紧块,所述涨紧块的顶部两侧分别连接有侧夹块,两个侧夹块上方连接上夹块,所述外框与上夹块和两个侧夹块配合对复合材料产品进行夹紧。本发明在设备仅有一个上下夹持力的情况下,仅通过夹持工装的设计即可产生三个方向的夹持功能,保证U形复合材料产品的两侧翼板和底板同时被夹持产品在拉挤成型过程中同步前进,消除了传统拉挤产生的内应力和直线度不足及生产容易间断的问题,大大提高了产品质量和生产效率。
本发明提出了一种磁选机用大直径纤维增强复合材料耐磨圆筒及加工方法,属于磁选机用圆筒领域,特别是涉及一种磁选机用大直径纤维增强复合材料耐磨圆筒。解决了现有磁选机用圆筒筒体通磁性差、成本高、质量大、耐磨层和筒体结合性差和圆筒成型工艺难度大的问题。它包括筒体和耐磨橡胶层,所述筒体包括复合材料筒皮、套筒、紧固螺栓和法兰,所述法兰包括插接式法兰和嵌套式法兰。它主要用于磁选机用圆筒。
本发明属于新型纳米功能材料与电化学生物传感检测技术领域,公开了一种三维玫瑰花状硫化钒纳米片球‑还原氧化石墨烯复合材料的制备。本发明是要解决现有材料在检测肾上腺素时灵敏度差和检测限高的问题。本发明主要制备方法如下:一、一种三维玫瑰花状的硫化钒纳米片球制备;二、采用一步水热法制备玫瑰花状硫化钒纳米片球‑氧化石墨烯复合材料;三、自动喷涂法制备出玫瑰花状硫化钒纳米片球‑氧化石墨烯/ITO电极;四、热处理法制备出硫化钒纳米片球‑还原氧化石墨烯/ITO电极。本发明工艺流程简单、成本低,制备的三维玫瑰花状硫化钒纳米片球在还原氧化石墨烯纳米片中均匀分布,提供了高比表面积,丰富的活性位点,并具复合材料有良好的导电性。用作电化学生物传感器的电极材料时,该电极可以对肾上腺素表现出较强的电化学信号响应。
一种高介电性能的铌酸钠/聚偏氟乙烯复合材料及其制备方法,它属于复合材料制备技术领域。本发明要解决的技术问题为研发高介电性能、低成本易生产的新型储能材料。本发明首先制备铌酸铋钠晶体,然后制备铌酸钠晶体进行处理,然后加入一定体积的N,N‑二甲基甲酰胺溶液中,超声分散30min,然后再加入一定质量的聚偏氟乙烯,继续超声分散1~2h后,得到铌酸钠/聚偏氟乙烯溶液在玻璃板上自然流延成膜,放到真空烘箱中抽真空,在放入鼓风烘箱烘干,得到一种高介电性能的铌酸钠/聚偏氟乙烯复合材料。本发明材料表现出很小的介电常数和损耗因子,以及更高的击穿强度,且成型简单,能耗低,易加工,可用于储能元件,微电子加工等领域。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!