本发明提供了一种复合材料、制备方法、壳体、壳体的制备方法和电机。其中,复合材料包括:树脂、纤维和金属合金;其中,纤维包括导电纤维。从而通过在复合材料添加导电纤维和金属合金,使得该复合材料成型过程中,利用金属合金熔融定向聚集于导电纤维节点位置,进而形成纤维三维网络骨架,进而有效降低导电纤维节点位置的电阻和热阻,而且还增强了其断裂韧性,在保证复合材料制备出的产品具有优异的表面光洁度、致密性和机械强度的基础上,实现了该产品的导电、导热性能的大幅度提升。
本发明公开了一种测试不同温度下复合材料疲劳测试装置,包括测试箱、承接组件、传送箱体、一体化传送机构、复合材料固定配合机构和隔档机构,测试箱顶壁上开设有进取料槽,测试箱底壁上铰接设有防护盖,测试箱侧壁上设有气体输送管道,测试箱设有两组,传送箱体设于两组测试箱之间,传送箱体与两组测试箱连通,承接组件设于测试箱内,一体化传送机构设于传送箱体顶壁上,复合材料固定配合机构滑动设于承接组件和传送箱体底壁上,隔档机构设于测试箱和传送箱体上。本发明涉及复合材料疲劳测试技术领域,具体提供了一种设置有冷环境热环境的一体化传送机构,以有效提高测试效率的测试不同温度下复合材料疲劳测试装置及其使用方法。
本发明涉及一种柔韧性好耐低温聚酰胺树脂复合材料及其制备方法,属于聚合物技术领域。本发明柔韧性好耐低温聚酰胺树脂复合材料,按质量份数计,包括80份尼龙、15‑25份ABS树脂、10‑20份相容剂、15‑30份玻璃纤维、0.1‑2份偶联剂、0.5‑2份耐寒助剂、0.1‑1.5份抗氧剂和0.1‑2份加工助剂,经两步混合均匀后再经双螺杆挤出机造粒制备而成。本发明制备柔韧性好耐低温聚酰胺树脂复合材料时使用了相容剂及ABS树脂以及耐寒助剂,提高了柔韧性,极大地提升了树脂材料的耐低温性能,解决了尼龙树脂在低温下的脆性问题,能在低温下使用;同时添加了无机填料,提高了复合材料的刚性,使复合材料拥有更广泛的使用范围。
本发明公开了一种高纤维体积含量聚(3‑羟基丁酸酯‑co‑3‑羟基戊酸酯)(PHBV)单聚合物复合材料及其制备方法,复合材料中增强相为3‑羟基戊酸酯(HV)含量为0~20mol%的PHBV纤维,基体是HV含量为10~100mol%的PHBV,增强相纤维的体积含量为5%~90%。复合材料的制备方法为:(1)将皮芯结构的PHBV纤维加工成纤维集合体;(2)将1~1000层皮芯结构PHBV纤维集合体叠加在一起;(3)在热压机上,在1~20MPa的压力和100~160℃的温度下,将皮芯结构PHBV纤维集合体热压成PHBV单聚合物复合材料。所得的PHBV单聚合物复合材料可用于包装、汽车等领域。
本发明公开一种石墨烯和导电聚合物复合材料,该复合材料包括基体,在基体表面上依次具有石墨烯层和导电聚合物层,或者在基体表面上依次具有导电聚合物层和石墨烯层。通过先向基体表面转移石墨烯,然后在石墨烯上涂覆导电聚合物;或者,先向基体表面涂覆导电聚合物,然后在导电聚合物上转移石墨烯,烘烤,得到所述石墨烯和导电聚合物复合材料。本发明的复合材料制备过程简单,该复合材料能显著降低石墨烯转移后的方阻,且稳定性好,即使长时间放置,石墨烯方阻的衰减也非常小,放置30天的方阻衰减率在10%以内。
本发明提供一种导电高分子/金属单原子纳米复合材料及其制备方法与应用,首先通过化学聚合法制备得到导电高分子,然后通过浸渍法将其与金属前驱体盐进行混合搅拌、离心洗涤和冷冻干燥,以使金属前驱体盐吸附并锚定在导电高分子上,最后通过氢氩还原法将金属前驱体盐还原为金属单原子,获得导电高分子/金属单原子纳米复合材料。该导电高分子/金属单原子纳米复合材料可充分利用导电高分子材料中的硫、氮、氧等基团,以锚定金属单原子。导电高分子材料具有原料来源广泛、分子结构可设计性强、材料成本低等优势。该制备工艺简单易操作,所得的导电高分子/金属单原子纳米复合材料的性能良好,具有极其广阔的应用范围。
本发明涉及一种超高分子量聚乙烯复合材料的制备方法,属于高分子材料技术领域。其通过选用医药级超高分子量聚乙烯UHMWPE粉末为基础材料,并对其复合添加天然维生素?E和单层氧化石墨烯GO,制成混合粉末,将混合粉末加入模具中,通过热压成型方法制备出UHMWPE/GO?VE复合材料;随后对其进行γ?射线辐照交联处理,最终得到抗氧化超低磨损超高分子量聚乙烯复合材料。本发明制备的γ?射线辐照交联UHMWPE/GO?VE复合材料具优良的耐磨性能;而GO的二维结构和优异的力学性能与生物相容性能不仅降低了磨损,减少了磨屑数量,而且降低了由磨屑而引起的细胞不良反应程度;还具有优异的抗氧化和抗老化性能。
本发明涉及一种剥离型蒙脱土和环氧树脂复合材料的制备方法,特征是,包括以下工艺步骤:(1)蒙脱土的有机化改性:配制插层剂盐溶液;将蒙脱土悬浊液加入插层剂盐溶液,使插层剂与蒙脱土间阳离子进行充分交换;将悬浊液进行离心过滤,用去离子水对过滤得到的固体进行重复洗涤,用硝酸银溶液对洗涤后的去离子水进行检测,直至无白色沉淀产生;离心过滤得到的固体进行真空干燥;将真空干燥后的固体粉碎研磨至固体可通过200目筛,得到有机化改性蒙脱土;(2)将有机化改性蒙脱土与环氧树脂和固化剂进行混合得到混合体系:(3)脱泡、固化。本发明采用的插层剂可使层间固化反应先于外部进行,更容易得到剥离型蒙脱土环氧树脂复合材料。
本实用新型公开了一种智能电网用智能绞合型复合材料加强芯,由内至外依次为光纤单元、复合芯单元和导电层;复合芯单元由中心复合材料股块和位于外部的绞合层复合材料股块组成;中心复合材料股块为一根圆形复合芯,截面积为4?20mm2;所述绞合层复合材料股块为多根非圆形的复合芯绞合而成,每根复合芯的截面积为4?20mm2;所述复合芯单元的总截面积≥70mm2。本实用新型的复合芯采用绞合的复合芯的结构,大大提高了复合芯柔软性,便于生产安装和敷设,即使施工架线中造成某一股线受损,仍然能运行,而不影响其余各股复合芯,不会出现现有的独根复合芯,一旦复合芯产生裂纹,其裂纹迅速扩展,造成整根断裂的情况,而且利用光纤单元,具备了智能监控、智能测温等作用。
本发明涉及一种石墨烯基导热复合材料,其特征在于:该复合材料中,包括石墨烯,钯或铂,铜纳米粒子及树脂高分子材料;所述复合材料中石墨烯的质量百分比例为40‑90%,钯或铂0.1‑10%,铜纳米粒子的百分比为9‑50%,树脂高分子的百分比为1‑20%。本发明的石墨烯基导热复合材料具有导热性好、价格低廉的特点。
本发明公开了一种棒状二硫化钼/硫化铜纳米复合材料及其制备方法,属于纳米材料技术领域。本发明利用铜纳米线作为铜源,硫脲同时作为二硫化钼和硫化铜的硫源,通过一步水热法制备得到了棒状二硫化钼/硫化铜纳米复合材料,本发明方法简单、高效,制备得到的棒状二硫化钼/硫化铜纳米复合材料产物尺寸均一、结晶性好,能够应用于二氧化碳的催化领域。当其作为电极时,过电位为‑1V时,其电流密度可达27.1mA·cm‑2,本发明制备得到的复合材料的电化学稳定性良好,8小时恒电位(‑1V)测试后其电流密度仍可达25.9mA·cm‑2。
本发明涉及一种温度检测装置及检测方法,尤其是一种复合材料灌输及固化过程的温度检测装置及方法。按照本发明提供的技术方案,所述种复合材料灌输及固化过程的温度检测装置,包括模具及位于模具内的复合材料工件;还包括支架,所述支架上设有温度采集装置;所述温度采集装置检测复合材料工件的温度值,并将所述温度值通过传输装置传输到处理器;所述处理器接收传输装置输出的温度值,并与处理器内预存校正的温度值相对比,经人机界面输出对比的温度曲线。本发明检测实时性好、检测精度高、操作方便及经济环保。
本发明公开了一种导热本征型阻燃木质素衍生物基环氧树脂复合材料及其制备方法,属于高分子复合材料技术领域。本发明获得了具有(1)和(2)所示的结构的木质素衍生物基含磷环氧树脂。本发明通过席夫碱键和含磷阻燃剂DOPO上的P‑H进一步反应,得到了本征型阻燃环氧树脂,然后将其与还原氧化石墨烯气凝胶GA、固化剂、商业环氧树脂混合制备得到复合材料,一方面提高了导热本征型阻燃环氧树脂复合材料的稳定性,防止阻燃剂的迁移,另一方面提高了阻燃性能以及力学性能。此外,该发明制备简单,生产成本低,制备的导热本征型阻燃环氧树脂原料是生物基可再生的木质素衍生物,可广泛应用于阻燃、电子电器等方面。
本发明涉及一种混杂增强塑木复合材料板材及其制备方法,属于复合材料和新型化学建材技术领域。本发明由高密度聚乙烯、马来酸酐接枝聚乙烯、内增强木粉、改性硫酸钙晶须、石墨烯粉体、玻璃纤维粉、萜烯树脂、白油、硬脂酸钙、氧化聚乙烯及抗氧剂组成。本发明一种混杂增强塑木复合材料板材生产制造方便,传统塑木板材挤出成型生产线即可用于其生产,生产连续性强,生产效率高;防水,防腐,不虫蛀,不开裂,不老化,不存在色差,使用过程中不掉漆,废弃后可回收再生;和普通塑木复合材料相比,综合机械性能好,防翘曲变形能力强,刚柔相济,脆性低,不易碎裂等。
本发明公开了一种基于改性淀粉增韧热塑性复合材料及制备方法。增韧热塑性复合材料包括:淀粉基接枝共聚物和热塑性树脂,淀粉基接枝共聚物为1~60重量份;热塑性树脂为聚乳酸、聚羟基脂肪酸酯、聚甲醛、聚氯乙烯、聚甲基丙烯酸甲酯、聚苯乙烯、聚碳酸酯、聚酰胺、聚酯、聚苯醚、聚氨酯、聚丙烯中的至少一种;淀粉基接枝共聚物是由天然淀粉经改性后接枝烯类单体聚合形成。方法包括:组分按所述用量熔融共混后制得所述基于改性淀粉增韧热塑性复合材料。本发明利用淀粉接枝改性物增韧脆性塑料,既实现了乳化过程中无需乳化剂,也实现了无需添加增塑剂即可对热塑性复合材料塑化加工,同时生产效率高,成本低,工艺简单,性能可控。
本发明公开了一种复合材料的制备工艺,该工艺为碳化硼—铝基复合材料的制备工艺,通过对碳化硼基体的预处理后,采用无压浸渗工艺制备碳化硼陶瓷,包括:造粒—酸洗—水洗—模压成型—烘干—抽真空—浸渗—保温—冷却。造粒粒径为6—9μm,酸洗为硝酸清洗,浓度为25%—35%,浸渗基体为铝合金或镁合金,真空度为10—3—10—4MPa,以高纯度氩气为保护气,温度为800—1200度,控制精度为±1度,加压压力值为0.5—0.9MPa,保温时间为40—50min,冷却方式为随炉冷却。该发明用于制备碳化硼—铝基复合材料,该工艺工序简单,容易操作,并且加工的碳化硼—铝基复合材料质量好,性能稳定。
一种在酸性条件下对重金属离子具有吸附作用的氧化石墨烯/氨基酸复合材料的制备方法,属于复合材料制备及应用的技术领域。本发明采用亲核反应使氨基酸中氨基与氧化石墨烯中羧基反应制备得到氧化石墨烯/氨基酸复合材料。氨基酸是一种对环境友好的两性化合物,由于氨基酸中含有对重金属离子有强络合作用的氨基和羧基,故通过制备氨基酸功能化氧化石墨烯,可利用氨基酸具有酸碱两性的特殊性提高功能化氧化石墨烯在酸性条件下对重金属的移除效率,且由于氨基酸对环境友好性,在移除重金属离子的过程中不会造成二次污染。在pH值为2~7的条件下,对Pb2+和Cu2+有较好的吸附效果,吸附率可达71~99%。本发明所制得的氧化石墨烯/氨基酸复合材料在酸性条件下对重金属离子的吸附作用具有较高的实际应用价值。
本发明涉及高分子复合材料技术领域,涉及一种改性纳米二氧化钛/热固性树脂复合材料及其制备方法。按质量比,1-5份的改性的纳米二氧化钛和100份热固性树脂在熔融状态下混合均匀,得到一种改性纳米二氧化钛/热固性树脂复合材料。纳米二氧化钛的改性是在颗粒表面以化学键的形式连接含有氨基和其他的阻燃基团的超支化聚硅氧烷。得到的复合材料除了具有环氧树脂本身的强度和韧性之外,还具有很强的耐热性、优良的阻燃性、低固化温度等优点,可以广泛的应用在航空航天、电子电器、交通运输等高技术领域。整个过程操作比较简单,具有适用性强、环保等特点。
一种制备高性能铝基片状石墨复合材料的方法,采用铝金属与增强相片状石墨进行结合,制备出具有高导热的导热复合材料,将片状石墨一层层交错平铺在压力成形模具中,通过压头挤压的作用,制备出片状石墨块,然后对压力成形模具二次加工,使其具有上下开口,为融铝的压力浸渗做准备。为了避免制备过程中片状石墨的氧化失重问题,制备过程采用真空加热炉,使铝液在真空环境进行熔融浸渗,完全覆盖住片状石墨,避免了片状石墨与空气接触发生氧化反应;本发明最后采用压力浸渗,通过压力机的高压使铝液充分填充到片状石墨空隙,形成了具有高致密度、高导热的铝基片状石墨复合材料,制备出的铝基片状石墨复合材料可进行切削加工,即可得到各类结构的芯片散热器。
一种在复杂型面铝金刚石产品表面覆盖铝基复合材料层的工艺,首先将非金属粉与粘接剂调成浆状的喷涂料,然后在压铸铝金刚石复合材料产品的成型模具型腔内侧喷涂脱模剂,待脱模剂干燥后,在其上面喷涂上一层隔离剂,待隔离剂干燥后,在隔离剂上喷涂一层由非金属粉和粘结剂调和成的浆料,待浆料干燥固化以后,组装产品成型模具,并在成型模具内涂了浆料的内侧空腔中灌装金刚石粉料,振动并压实金刚石粉料,使其与干燥的浆料层紧密贴合,在压铸渗铝的过程中,压铸铝渗入非金属粉的浆料层,并与铝金刚石复合材料之间形成牢固的连接,实现在散热器件表面覆盖一层可进行机械加工和涂镀处理铝‑非金属复合材料层。
本发明公开了一种抗湿滑树脂复合材料,该复合材料按照重量份数计原料包括:改性萜烯树脂60~85份、芳香基聚砜树脂12~20份、脂环烃树脂10~20、增容剂4~10份;该复合材料是一种直接内添加型的试剂,以克服需要进行大量调整和产生巨大波动的使用白炭黑和溶聚丁苯橡胶的方案,该复合材料在混炼时和其它小料一起加入,不需要进行赔付和工艺的调整,使用后明显提高硫化胶的抗湿滑性能,提高橡胶制品尤其是轮胎的行驶安全性,且原材料易得,成本较低廉,制备工艺简单易行。
本发明涉及一种高韧性的抑菌PET复合材料及其制备方法,特别是一种回收PET材料的制备方法,所述复合材料包括PET 65~90份,醋酸乙烯酯基共聚物5~35份,纳米氧化锌0.1~4份,所述醋酸乙烯酯基共聚物中醋酸乙烯酯的质量含量为45~75%;该共聚物至少还含有甲基丙烯酸缩水甘油酯和乙烯结构单元,其中甲基丙烯酸缩水甘油酯的质量百分含量为0.5~10%。本发明的材料韧性好,强度高,可用于制备抗菌性纤维及织物、塑料包装、汽车内饰件和医疗耗材领域。
本发明提供了一种耐热老化的聚乙烯复合材料,包含如下组分:聚乙烯、交联剂、抗氧剂、聚乙烯蜡、轻质碳酸钙、水滑石;聚乙烯蜡熔融后在材料表面形成一层蜡膜,起到保护作用;轻质碳酸钙可以填补分子链之间的小空隙;水滑石可以将一些功能性客体物质引入层间空隙将层板距离撑开,填补聚乙烯分子链之间的空隙,使分子链更紧密;各成分相互作用提高了复合材料的热稳定性,使其可长时间在高于100℃的环境中工作,本发明所述聚乙烯复合材料绝缘性能优异,使用寿命长,用于10~35kV中压电缆绝缘,可以满足中压电缆对绝缘性能的要求,且所述复合材料中各成分配比合理,原料廉价易得,生产成本低。
本发明公开了一种高剥离强度可低温固化的面板‑芯夹层结构复合材料,所述复合材料包括上下面板、胶膜和泡沫芯材;所述复合材料的制备方法包括如下步骤:(1)将环氧树脂与增韧剂在50‑70℃下搅拌,混合完全后,冷却到常温,得到混合液A;(2)向步骤(1)得到的混合液A中加入固化剂,在常温下搅拌均匀后,得到混合液B;(3)将步骤(2)得到的混合液B置于涂胶机中,通过红外线仪检测胶膜的厚度,制得厚度为0.5‑2mm的胶膜;(4)由下而上依次为下面板、胶膜、泡沫芯材、胶膜、上面板,进行叠料,之后经过热压罐固化,制得所述高剥离强度可低温固化的面板‑芯夹层结构复合材料。
本发明涉及一种高抗冲塑木复合材料板材及其制备方法。本发明先将塑料粒子、纳米二氧化钛搅拌后挤出造粒,得到高抗冲塑料粒子;然后将高抗冲塑料粒子、木粉、LDPE-g-GMA、滑石粉、萜烯树脂、EPDM、硬脂酸丁酯及氧化聚乙烯拌匀后,采用挤出机进行熔融共混并挤出造粒,得到塑木复合材料粒子;最后采用挤出机将上述塑木复合材料粒子挤出成型得到高抗冲塑木复合材料板材。本发明生产制造方便,生产成本低;塑料用量少,环境友好,抗冲击性能好,使用寿命长,使用范围广。可广泛应用于市政道路、楼堂馆所、居家办公、包装运输等诸多场合或领域。
本发明公开了一种增强复合材料用天然纤维素纤维的预处理方法。这种预处理方法通过对天然纤维的温湿度平衡、高温高压处理、溶胀处理和超声波处理等几个步骤打开天然纤维缺陷结构和无定形区的分子链段缠结,在消除天然纤维弱强力部位的同时,在天然纤维表面形成细小毛羽结构,提高天然纤维与复合材料基体的界面相容性和天然纤维复合材料中的分散程度,从而为制备高机械性能的天然纤维增强复合材料提供条件。
本实用新型涉及的一种高绝缘性轻量化复合材料横担,包括复合材料横担本体,所述复合材料横担本体为L型的角钢结构,角钢结构包括横段以及竖段,所述竖段的中心设置有安装孔,所述安装孔内设置有卡扣组件,所述卡扣组件包括内卡扣和外卡扣,所述内卡扣和外卡扣配合连接,所述内卡扣包括内圆环垫片,所述内圆环垫片的外侧面的内圆向外延伸有的空心结构的内圆柱,所述外卡扣包括外圆环垫片,所述外圆环垫片的内侧面的内圆向内延伸有空心结构的外圆柱,所述外圆柱的内段沿其圆周方向均匀设置有多个卡口。本实用新型一种高绝缘性轻量化复合材料横担,具有安装方便,安全系数高、使用寿命长的优点。
本发明公开一种电机轴承保持架用PA66基复合材料及其制备方法,涉及塑料轴承保持架技术领域。本发明公开的电机轴承保持架用PA66基复合材料是由以下重量份数的原料组成:PA66/PEEK基体50~80份、表面改性埃洛石纳米管15~40份、超支化环氧树脂5~10份、复合分散剂3~5份、成核剂0.2~0.4份和润滑剂1~2份,所述PA66/PEEK基体是将PEEK经过磺化预处理后,再利用硅烷偶联剂与PA66进行复合而制得的。本发明提供的PA66基复合材料具有高强度和韧性,优异的耐磨性、自润滑性、尺寸稳定性和防水性,长期工作温度最高可达180℃;材料表面和内部具有高孔隙度,使固体或液体润滑剂可渗入到PA66基复合材料中,使保持架具有较好的润滑保持性,延长了保持架的使用寿命,降低了成本。
一种提高金属基复合材料性能的成型压铸工艺,包括压机的工作台,所述工作台的上表面固定安装有套模,所述套模的中部开有截面为倒锥形的通孔,所述工作台的中部穿过有压机的顶升杆,所述顶升杆的顶面与底板接触,所述底板的顶面放置成型模具组件,所述底板的外径与套模底部的内孔内径匹配;所述套模的外部安装有电加热装置;还包括与套模顶面匹配的盖板,所述盖板的中部通过圆柱销固定压头;本发明有效的解决了采用粉末冶金和挤压铸造法制备金属基复合材料,存在粘黏剂杂质、气孔率较高及同一模压铸的产品复合材料性能质量有差异等问题,采用该方法制备的金属基复合材料,无粘结剂杂质、气孔率低、金属液渗透良好,材料综合性能好。
本发明公开了一种增强型复合材料芳纶纤维织物及其制备方法,所述的一种增强型复合材料芳纶纤维织物由如下重量份数的原料组成:芳纶纤维织物1块,环氧树脂8‑10份,固化剂1‑3份,增韧剂2‑3份,纳米二氧化钛3‑5份,氧化锌2‑4份,溶剂80‑100份。本发明的增强型复合材料芳纶纤维织物的制造工艺简单易与操作,制得的织物可以直接运用在服装生活等各个方面,可以改善了芳纶纤维在紫外线照射时强度会大幅下降的缺点,同时使芳纶纤维的韧性得到提高,并且复合材料的共同使用会改善单一材料的性能,增强了原来单一材料的性能。
中冶有色为您提供最新的江苏无锡有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!