用于超级电容器电极的多孔成型木炭/金属氧化物复合材料的制备方法,其步骤为:采用木块直接碳化法制备多孔成型木炭,然后采用电化学沉积法和化学沉积法制备出多孔成型木炭/金属氧化物复合材料,多孔成型木炭来源丰富,制备工艺简单且具有多孔结构,其与金属氧化物和氢氧化物复合后具有很高的比容量,而且复合材料的制备工艺简单,适合于大规模生产应用;本发明制备的复合材料可直接制作电极,不需要添加石墨和聚合物粘结剂等添加剂,提高了电极的导电性,电容器输出比容量明显提高,该方法在提高复合材料的比容上具有非常显著的效果。
本发明属于电子封装材料领域,涉及一种高速列车IGBT封装用层状石墨烯/金属复合材料的制备方法。包括以下步骤:首先将金属箔按“手风琴”样式折叠若干层,并配置一定浓度的氧化石墨烯溶液。将折叠后的金属箔连同氧化石墨烯溶液一起转入到水热反应釜中进行水热反应。反应结束后,将镀覆石墨烯薄层的金属箔转移到管式炉中进一步热还原。所得到的石墨烯/金属箔冷压成型后热压烧结,最终制得层状石墨烯/金属叠层复合材料。本发明工艺操作简单,成本低廉,易于工艺放大,复合材料具有层状结构,可最大程度发挥石墨烯优异的平面热导率。所制备的层状石墨烯/金属复合材料的平面热导率为480~680 W/mK,可满足高速列车IGBT封装的散热要求。
本发明公开了一种稀土粒子/蒙脱土纳米复合材 料及其制备方法,该方法依靠表面活性剂乳液自组装产生模 板,以聚合物单体为油相,稀土离子水溶液为水相混合形成稀 土纳米粒子的反胶束微乳液,使稀土粒子均匀分散于油相中, 形成热力学稳定的乳液体系,将该乳液插层于有机蒙脱土的片 层间,加入引发剂,聚合物单体直接进行原位聚合,然后进行 微波辐射,使聚合物分解成CO2 和H2O,制得稀土粒子/MMT纳 米复合材料。本发明的稀土粒子/蒙脱土纳米复合材料,使蒙脱 土片层的厚度大约为30~50nm,稀土纳米粒子的平均粒径为 25nm左右,具有非常大的界面面积,稀土粒子与蒙脱土基体 界面具有理想的粘接性能,有效地解决了纳米粒子的团聚问 题,使得复合材料的理化性能得到很好的改善。
本发明提供了一种制备四氧化三铁/类氧化石墨烯磁性纳米复合材料的方法,其以单一Fe2+盐葡萄糖酸亚铁为铁源和碳源,H2O为溶剂,利用水热法,通过控制水热条件,一步制备了具有高磁性能的Fe3O4和具有类似氧化石墨烯结构碳(LGO)的磁性纳米复合材料Fe3O4/LGO。本发明方法无需其它任何添加剂(如碱性沉淀剂、氧化剂、催化剂、表面活性剂等),更无需进行Fe3O4材料的表面修饰的条件下,一步实现了Fe3O4、LGO的生成及二者的有效复合,制备出相间存在强相互作用的Fe3O4/LGO磁性复合材料,具有工艺简单、流程短、成本低、绿色环保等突出优点,有利于工业化。
本发明提供了一种自润滑织物复合材料及其制备方法,属于自润滑织物复合材料技术领域。本发明所用单壁碳纳米管具有高的热导率,能够缓解摩擦热的产生,降低复合材料的磨损率,延长复合材料的使用寿命;本发明利用多巴胺对单壁碳纳米管进行改性,还能够提高界面粘结能力,良好的界面结合强度能更好的传递应力,提高复合材料的承载能力,进而提高其耐磨性以及寿命。聚四氟乙烯‑芳纶纤维混编的织物,在结构上具有高度有序性和紧密性,比单独的纤维具有更高的承载能力、耐磨性以及优异的比强度。本发明把碳纳米管引入织物复合材料,能够有效提高自润滑织物复合材料的摩擦学性能和使用寿命。
本发明提供了一种片状碳化钛负载二氧化锰复合材料,主要用于超级电容器电极材料,属于属于复合材料领域及超级电容器技术领域。本发明以Ti3AlC2粉末为原料,先通过HF刻蚀掉Al后形成二维层状结构的Ti3C2Tx,再利用高锰酸钾与其发生原位生长在二维层状碳化钛表面原位生长,得到片状碳化钛表面负载有一层二氧化锰薄膜和一些球状二氧化锰颗粒的复合材料。该复合材料电容性能优异,在0.5M?K2SO4电解液中测得比容量高达256F/g,经1000次循环后比容量保留率达92%,同时交流阻抗测试显示该材料阻抗极低,具有安全性好、可靠性高及能量充足等优点,具备广阔的商业应用前景。
本发明公开了一种在碳纤维复合材料表面制备铝膜的方法,特点是采用脉冲电弧离子镀膜技术在层压结构的碳纤维复合材料表面镀制铝膜,其具体步骤包括:将碳纤维复合材料的表面进行化学清洗、离子束清洗、镀制铝膜,本发明工艺简单,薄膜附着力高,厚度均匀,大大提高了层压结构的碳纤维复合材料表面的电性能,进一步拓宽了层压结构的碳纤维复合材料在天线反射器上的应用,适用于规模生产,实现了层压结构的碳纤维复合材料结构件复杂表面的金属化需求。
本发明公开了一种蒙脱土/稀土粒子/聚合物三元纳米复合材料及其制备方法。本发明依靠表面活性剂形成乳液自组装产生模板,以聚合物单体为油相、稀土离子水溶液为水相形成反胶束微乳液,制备稀土纳米粒子,并均匀分散于油相中形成热力学稳定的乳液体系,然后将该乳液插层于有机蒙脱土的片层间,加入引发剂聚合物单体直接进行原位聚合,制备成蒙脱土/稀土粒子/聚合物三元纳米复合材料。本发明稀土粒子的插层和单体聚合与复合材料的制备同步进行,省略了对无机纳米粒子进行有机物的改性和在前驱体中再分散等步骤,简化了复合材料制备程序,缩短了制备时间;操作简单,生产效率高,成本低。本发明制得的复合材料具有优越的热学和电学性能和机械加工性能。
本发明提供了一种聚吡咯-纳米石墨薄片-环氧树脂复合材料,属于复合材料技术领域。本发明以丙酮为溶剂,顺丁烯二酸酐为固化剂,氟化钠为促进剂,聚吡咯-纳米石墨薄片复合材料为导电填料,通过超声分散,使聚吡咯-纳米石墨薄片均匀分散在环氧树脂中,蒸发溶剂后倒模,固化,得到具有良好机械性能和导电性能的复合材料。通过电镜和FTIR谱图分析,本发明复合材料中,聚吡咯-纳米石墨薄片均匀分散在环氧树脂中,聚吡咯生长在纳米石墨薄片的表面,环氧树脂包覆聚吡咯-纳米石墨薄片的表面;通过机械性能和电性能分析:本发明复合材料的弯曲强度为7.50~18.50MPa,弯曲模量为330~2955MPa;导电率为0.563×10-3~1.562×10-2S/cm。
本发明提供了一种新型温敏荧光纳米复合材料的制备方法,属于复合材料技术领域。该方法是将纯化后的多壁碳纳米管和十二烷基苯磺酸钠在乙醇与水的混合液中超声分散后,加入硝酸铕溶液,继续超声一段时间后;用氢氧化钠溶液调节pH=8~9;继续超声0.8~1h,回流反应2.5~3h,过滤,洗涤至中性,干燥,研磨,得到氢氧化铕/碳纳米管的纳米复合材料;于500~1000℃下煅烧4~6h,得到温敏荧光纳米复合材料。本发明制备了新型温敏荧光纳米复合材料中,纳米Eu2O3粒子均匀地吸附在多壁碳纳米管的表面。在500℃~600℃条件下煅烧,复合物有微弱的荧光,而在600℃~1000℃煅烧,复合物表现出了较强的荧光。
本发明公开了一种碳化硅基高温自润滑复合材料,该复合材料所包含的组分及各组分的质量百分含量为Mo 10~40%、CaF2 10~30%、碳化硅 30~80%。本发明还公开了该复合材料的制备方法。本发明所述复合材料在室温、800℃和1000℃具有低摩擦系数和磨损率的特性,适合制作轴承、机械密封等在低温至1000℃使用的高温机构润滑部件,在航空、航天、核能、冶金和机械等领域具有广泛的应用前景。
本发明公开了一种宽温域镍基自润滑复合材料,该复合材料的组成及各组分的重量百分含量为:镍基合金?50~92%、Ag?0~15%、CaF2?3~10%、MoS2?5~25%;镍基合金为预烧结合金粉末,其组成及各组分的重量百分含量为:Ni?69~82%、Cr?9~12%、Mo?6~10%、V?1~3%、Al?2~6%。本发明还公开了该复合材料的制备方法,复合材料通过热压烧结技术制备。本发明所述复合材料在室温至高温700℃温度范围内具有低摩擦系数磨损率,并且同时具有高的强度。本发明所述复合材料适合制作在低温至700℃范围使用的轴承、轴衬、滑块及密封件等部件,在航空航天、机械等领域具有广泛的应用前景。
本发明提供了一种聚苯硫醚‑二氧化硅超疏水复合材料的制备方法,将纳米SiO2分散在乙醇中得纳米SiO2的乙醇分散液;将乙醇水溶液用醋酸调节pH至4~6,加入3‑氨丙基三乙氧基硅烷预水解得3‑氨丙基三乙氧基硅烷的水解液;将3‑氨丙基三乙氧基硅烷的水解液与纳米SiO2的乙醇分散液混合,常温搅拌2~4h,过滤、洗涤、干燥,得到3‑氨丙基三乙氧基硅烷修饰的SiO2,记为SiO2‑NH2;以酰氯化的聚苯硫醚和SiO2‑NH2为底物,以DMF为溶剂,以三乙胺为催化剂,于40~60℃反应10~12h,过滤,洗涤,干燥,得到聚苯硫醚‑二氧化硅复合材料。本发明纳米二氧化硅经硅烷偶联剂APTS改性,改性后的二氧化硅与聚苯硫醚进行接枝,增大了聚苯硫醚的表面粗糙度,使制备的聚苯硫醚‑二氧化硅复合材料具有很好的疏水性能。
本发明涉及一种石墨烯/金属复合材料的制备方法,属于金属基复合材料技术领域。包括如下步骤:配置一定浓度的氧化石墨烯溶液,水浴加热后快速倒入液氮中。将冷冻后的固体融化,之后与金属粉末在乙醇/水溶液中高速剪切混合均匀后再次放置于液氮中快速冷冻,随后冷冻干燥得到氧化石墨烯/金属复合粉末。复合粉末热还原后经放电等离子烧结得到高致密度的石墨烯/金属复合材料。本发明制备的石墨烯/金属复合材料中石墨烯呈现神经网络结构,可在提高复合材料的强度的同时保持金属基体良好的韧性,复合材料的性能明显优于同类复合材料。本发明的工艺方法简单可行,步骤易于操作,安全可靠性高,成本低廉,适于大规模生产。
本发明属于表面工程技术领域,涉及一种碳纤维复合材料工件表面真空镀钛膜的方法。该方法包括对工件化学清洗、真空出气、离子束清洗、镀TI膜四个步骤;通过在工件表面镀制TI薄膜,减少了复合材料工件的真空出气,避免复合材料工件在真空条件下使用过程中污染周围的零部件,导致其性能下降甚至功能丧失。在镀膜过程中,通过复合材料工件的旋转,实现工件表面薄膜均匀覆盖,减少碳纤维复合材料工件的真空出气量,从而满足该类材料在空间飞行器结构件上的应用。
本发明提供了一种二维纳米材料改性碳纤维织物自润滑复合材料及其制备方法,属于自润滑复合材料技术领域。本发明将片层Fe2O3纳米颗粒引入碳纤维织物复合材料中,二维片层Fe2O3尺寸为纳米级,能够在碳纤维织物表面形成涂层。而且,片层Fe2O3纳米颗粒具有高的比表面积,提高了其与碳纤维织物的界面接触,因此与碳纤维织物紧密连接;另外,片层Fe2O3纳米颗粒为二维片层状结构,在摩擦过程中发生层间滑移,能够降低界面剪切强度、降低摩擦系数,从而更好的传递应力,提高材料的载荷承载力,而且片层Fe2O3纳米颗粒能够增加碳纤维织物的刚度,进而提高复合材料的耐磨性以及使用寿命。
本发明提供了一种具有良好力学性能和加工性能的阻燃ABS复合材料。属于复合材料技术领域。该阻燃复合材料是由ABS、复合阻燃剂、有机化黏土、抗氧化剂、润滑剂、马来酸酐接枝EVA共聚物混炼而成。由于采用炭源,酸源,气源原料复合的阻燃剂,使阻燃ABS复合材料具有良好的阻燃性能的同时,大大改善了复合材料的力学性能和机械加工性能,从而改善了复合材料的应用性能。当阻燃剂添加量为总量的30%-45%时,本发明阻燃复合材料的氧指数为30.0~33.0,水平垂直燃烧级别达到UL94-V0级;材料抗拉强度可达到16.00~17.785MPa,断裂伸长率可达到5.658%~7.823%。
本发明公开了一种1-萘酚/还原氧化石墨烯复合材料的制备,属于复合材料领域。本发明采用吸附还原的方法,将1-萘酚吸附到氧化石墨上,然后用硼氢化钠还原氧化石墨,制得了1-萘酚/还原氧化石墨烯复合材料。1-萘酚通过π–π堆积作用吸附到还原氧化石墨烯上,有效的防止了石墨烯的团聚,同时为复合材料提供了赝电容,使得复合材料具有优异的电化学性能。电化学性能测试表明,本发明制得的1-萘酚/还原氧化石墨烯复合材料具有高的比电容和优异的循环稳定性,是一种比较理想的超级电容器电极材料。
本发明公开了一种聚合物/无机纳米粒子/石墨纳米微片三相纳米复合材料及其制备方法。本发明先将膨胀石墨在乙醇水溶液中经超声处理制得石墨纳米薄片,然后以聚合物单体为油相,无机离子水溶液为水相,依靠表面活性剂自组装形成的反胶束“微反应器”作为模板制备无机纳米粒子,并均匀分散于油相中,然后将该体系与石墨纳米微片分散均匀,直接进行本体原位聚合,制得全新的聚合物/无机纳米粒子/石墨纳米微片三相纳米复合材料。本发明的单体聚合与复合材料的制备同步进行,简化了制备程序,缩短了反应时间、操作简单,生产效率高,成本低,便于工业化生产;制备的复合材料将无机物的高强度、高耐热性与高分子良好的韧性、可加工性相结合,具有优异的性能。
本发明提供了一种三维花状结构石墨烯量子点/氢氧化锰(GQDs/Mn(OH)2)复合材料的制备方法,以石墨烯材料为碳源,通过浓酸和氧化剂氧化处理得到石墨烯量子点;然后将所得的石墨烯量子点溶液还原处理,得到具有绿色荧光的石墨烯量子点;再向溶液中加入NaOH调节溶液pH值至中性,析出三维花状结构的石墨烯量子点GQDs/Mn(OH)2复合材料。扫描电镜显示,本发明制备的三维花状结构石墨烯量子点GQDs/Mn(OH)2复合材料花状形貌规整、尺寸均一、重现性好,并且具有极大的比表面积,可广泛应用于石墨烯量子点或氢氧化锰相关的复合材料研究中。 1
本发明提供了一种石墨烯/氧化铕光电复合材料,属于复合材料技术领域。以水为介质,氧化石墨和硝酸铕为石墨烯和氧化铕的前躯体,利用铕离子与氧化石墨烯表面的羟基发生化学键合,使氢氧化铕均匀地包覆在氧化石墨烯的表面,然后用硼氢化钠把氧化石墨烯还原为石墨烯,在500℃下高温煅烧4小时得到石墨烯/Eu2O3复合材料。本发明制备的复合材料兼有优良的光学和电学性能,且有较好的热稳定性,这不但解决了石墨烯光学性能较差的问题,而且为石墨烯在光电器件发面的应用开辟了新的领域。本发明工艺简单,操作方便,反应条件温和,无污染,生产成本低,生产效率高,具有良好的工业化生产前景。
本发明公开了一种自润滑Si3N4/Ag复合材料,该复合材料通过以下方法制备得到:将质量百分比为76~92wt%的Si3N4粉末和8~24wt%的AgNO3水溶液球磨混合,然后将液体混合物置于烧杯内加热并搅拌直至水蒸气挥发完全为止,将粉末干燥后过筛得到50~100μm的粉末混合物;随后将粉末混合物装入石墨模具中,置于放电等离子烧结炉中烧结,烧结参数为:真空度为10‑2~10‑1Pa,升温速度为100ºC/min,烧结温度为1650~1700ºC,压力为30~40MPa,保温时间10~15min;烧结结束后,随炉冷却至室温得到Si3N4/Ag复合材料。本发明所述Si3N4/Ag复合材料兼具优异的力学性能和摩擦学性能(低摩擦磨损),使材料在25℃~600℃的温度范围内具有连续持久的自润滑性能,实现陶瓷复合材料的结构/润滑功能一体化设计。 1
本发明提供了一种纳米银粒子/石墨烯新型导电复合材料,属于复合材料技术领域。本发明将氧化石墨在水中超声分散1~2小时,加入硝酸银固体,继续超声25~30min,升温至70~80℃,加入硼氢化钠回流反应1~2小时,趁热过滤,洗涤,干燥,研磨,得到Ag/石墨烯纳米导电复合材料。本发明采用“一步”还原法制备了Ag/石墨烯纳米导电复合材料,其工艺简单,操作方便,反应条件温和,生产效率高;制备的导电复合材料中,纳米银粒子均匀地吸附在石墨烯的边缘,形成了Ag与石墨烯相互交替的导电网络,改善了纳米Ag粒子的分散性,有效提高了石墨烯的热稳定性和导电性,具有良好的工业化生产前景。
本发明涉及一种用于矿山采埸空区充填、支护的速凝复合水泥材料。它由铝矾土水泥等水泥、水泥熟料和活化剂组成的A料与B料构成。B料的重量配比为:氟石膏、磷石膏、二水石膏其中的一种为70.1—90%,生石灰5—20%,菱苦土0.1—15%,明矾0.01—5%,;A料与B料的重量比为1.0∶1.2—1.0。本材料在-4℃—10℃左右具有良好的凝固性,利用了工业废料,减少了环境污染,其膨胀率为0.1—5‰,接顶率高。
本发明涉及一种无机纳米粒子-高分子复合材料,其制备方法及其作为纸张涂布防老化的应用。它由纳米材料、表面改性剂和胶乳掺混而成,其中纳米材料的重量百分含量为1.00%-5.00%,表面改性剂的重量百分含量为0.04%-1.00%,胶乳的重量百分含量为94.00%-98.96%。其制备方法为首先将纳米材料的浆液经超声波分散,然后升温到表面改性剂熔点以上10-30℃,加入表面改性剂进行改性,反应1-3小时后,冷却,降温停止反应,然后将其与胶乳在常温下直接掺混,通过高速分散将其均匀混合。本发明能对涂料形成屏蔽作用,达到抗紫外老化和热老化的作用,同时增加涂料的隔热性。应用于纸张涂布,使涂布后的纸张性能得到大幅度的提高。
本发明公开了一种新型二茂铁衍生物功能化磁性碳纳米管复合材料制备方法,采用“水热法”将磁性Fe3O4纳米粒子与碳纳米管相结合,进一步以聚乙烯酰亚胺包裹,最后缩合6-氨基己酸二茂铁。该纳米复合材料修饰电极对细胞色素C有良好的电催化效果。
本发明属于固体润滑技术领域,提供了一种功能化衬垫织物及其制备方法和衬垫织物增强树脂复合材料及自润滑复合材料。本发明的功能化衬垫织物,包括纤维混纺织物和原位生长在所述纤维混纺织物表面的聚多巴胺‑二氧化硅‑氨基硅烷涂层。本发明通过在纤维混纺织物表面引入聚多巴胺‑二氧化硅‑氨基硅烷涂层,增加了纤维混纺织物的表面粗糙度和功能基团,促进了功能化衬垫织物与树脂基体间的机械联锁和化学键接作用,能够有效避免功能化衬垫织物中纤维被切断和拔出、功能化衬垫织物和树脂基体的脱离,有效降低功能化衬垫织物的磨损,进而提高衬垫织物增强树脂复合材料的耐磨性。
本发明公开了一种基于Ti3SiC2‑Al混合粉末为中间层的碳碳复合材料反应扩散连接方法,包括如下步骤:将Al粉与Ti3SiC2粉末按一定比例混合搅拌均匀,得Ti3SiC2‑Al混合粉末;将所得的Ti3SiC2‑Al混合粉末均匀铺在经清洗后的两块C/C复合材料之间,粉末松装厚度为1mm;将上述装有Ti3SiC2‑Al混合粉末中间层的C/C复合材料在保护气氛下温度为1450℃,压力为10‑20Mpa的条件下加压保温30min即可。本发明以Ti3SiC2粉为主要成分,加入适量Al粉,通过固相扩散和反应烧结的方法实现了C/C复合材料之间的稳定的高温高强度连接。
本发明提供了一种超支化聚胺酯/镧/蒙脱土三元纳米复合材料的制备方法,该方法以超支化聚胺酯(HPAE)树形分子为有机相,包覆稀土粒子镧(LA),并与蒙脱土(MMT)发生插层复合而得。本发明的方法制备的超支化聚胺酯/镧/蒙脱土三元纳米复合材料,经TEM、TGA、DSC、UV-VIS和FT-IR,测试结果表明,以超支化分子保护的稀土粒子LA插入到蒙脱土层间,并均匀地以纳米级分布;其稳定性好、微观分布均匀、光学活性高,可应用于制备稀土永磁材料和荧光材料。
中冶有色为您提供最新的甘肃有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!