本发明涉及一种二氧化钛/氧化锌原位改性制备PVC复合材料的方法。其改性剂配制,将石墨加入到花青素浓缩液中进行氧化还原反应得到石墨烯溶液;前驱体配制,在机械搅拌的条件下,将四氯化钛溶液与七水硫酸锌溶液充分混合得到前驱体;水热合成,将步骤(2)制得的前驱体与步骤(1)制得的石墨烯溶液混合,然后加入到高压反应釜中进行水热合成,之后自然冷却至室温,对水热产物进行过滤,水洗并干燥;功能型PVC复合材料的制备,利用原位嫁接聚合法,将步骤(3)得到的产物涂覆在PVC表面。本发明步骤简单,容易控制,实现了纳米颗粒的制备与改性集成一体化,在纳米颗粒的生长过程中实现了原位改性,且制得的纳米颗粒有较好的接触角。
本发明涉及一种新型光稳定剂的制备方法,以及具有由该制备方法获得的光稳定剂的耐光老化聚丙烯复合材料。经该制备方法获得的光稳定剂的通式表示为[M(Ⅱ)1‑xM(Ⅲ)x(OH)2]x+Ax/nn‑·mH2O,其中,M(Ⅱ)为二价金属离子Mg2+和Ni2+,M(Ⅲ)为三价金属离子Al3+,A为价态为‑n价的阴离子,x是M(Ⅲ)与[M(Ⅲ)+M(Ⅱ)]的摩尔比,m是结晶水量,x=0.1~0.5,A为OH‑、CO32‑,m=0~10。本发明解决了为得到光稳定剂需要在层状双氢氧化物层间插入有机紫外吸收剂的问题,从而获得稳定性较好的耐光老化聚丙烯复合材料。
本发明涉及一种基于电弧法的石墨烯/二氧化钛复合材料的制备方法,该制备方法包括以下步骤:称取二氧化钛放入到电弧放电装置的阴极和阳极电极的中间;向该电弧放电装置通入氦气和空气的混合气体;开启该电弧放电装置使其放电,并调节电流大小和控制反应时间;放电结束后制得石墨烯/二氧化钛复合材料。本发明方法克服了在氢气气氛中放电的危险性,同时电弧放电使原料的反应速度加快,合成时间短。本发明方法的工艺简单、操作方便,实用性强。
本发明提供了一种牦牛皮胶/PMVE‑MA复合材料,它由牦牛皮胶和PMVE‑MA以质量比为(4~8):1复合而成。本发明牦牛皮胶/PMVE‑MA复合材料溶胀度和力学性能优异,降解速率可满足支架材料植入体内的时间要求,微观结构满足细胞粘附生长的条件,而且具有低溶血率,作为组织工程支架材料具有极佳的潜力。
本发明公开了一种高强高韧的原生碳化钽和非晶合金共强化镁基复合材料及其制备方法,该方法主要步骤为:将钽粉和石墨粉按比例球磨得到原生碳化钛(TaC)合金粉体;将轻金属镁粉或铝粉或钛粉与其它一些合金元素按一定比例混合球磨得到高晶化温度的镁基/铝基/钛非晶合金颗粒粉体;将TaC合金粉体按一定比例加入到非晶合金颗粒粉体中,再高能球磨一段时间得到TaC和非晶合金的混合粉体;将TaC和非晶合金混合粉体按一定比例加入到镁合金粉体中,再加入一定量的酒精,利用超声辅助方式进行机械搅拌,充分混合均匀后再烘干;将烘干得到的复合粉体置于模具中进行高压压实,得到致密复合块体坯料,然后进行低温热压烧结;将烧结得到的复合块体以高加压比进行热挤出,最后得到高强高韧的原生微纳/米级TaC和非晶合金共强化镁合金复合材料。
本发明涉及一种石墨烯/二氧化钛复合材料及其制备方法,该制备方法包括以下步骤:称取二氧化钛放入到电弧放电装置的阴极和阳极电极的中间;向该电弧放电装置通入氦气和空气的混合气体;开启该电弧放电装置使其放电,并调节电流大小和控制反应时间;放电结束后制得石墨烯/二氧化钛复合材料。本发明方法中,电弧放电使原料的反应速度加快,合成时间短。本发明方法的工艺简单、操作方便,实用性强。
本发明公开了一种具有特殊三相共存结构的镁基复合材料及其制备方法,其主要步骤为:将钨粉和石墨粉按比例球磨得到原生碳化钨(WC)粉体;将镁粉/铝粉/钛粉与其它元素按一定比例混合,高能球磨得到高晶化温度的镁基/铝基/钛基非晶合金粉体;将WC粉体按比例与非晶合金粉体混合并球磨;将WC‑非晶合金混合粉体按比例加入到镁合金粉体中,再加入酒精,利用超声辅助方式进行机械搅拌,充分混合均匀后再烘干;将烘干的复合粉体进行高压压实,得到致密复合块体坯料,然后低温热压烧结;将烧结得到的复合块体以高加压比进行热挤出,最后得到具有特殊三相共存结构的原生WC与非晶合金共强化镁合金复合材料。
本发明公开了一种自动化的木塑复合材料的制造方法,包括装置主体以及设置于所述装置主体内的压实装置,所述压实装置包括设置于所述装置主体内的第一空腔,所述第一空腔的上侧内壁内固定设置有四组均匀分布的液压缸,所述第一空腔内可滑动的设置有第一滑块,所述第一滑块的上侧端面与所述液压缸之间配合连接有液压内柱,所述第一空腔的左右两侧内壁内相连通的设置有第二空腔,所述第二空腔内可滑动的设置有第二滑块,所述第二滑块的上侧端面上固定连接有延伸通入所述第一空腔内的第三滑块;本发明旨在设计一种能够自动的进行木塑复合材料加工而而仅需较少劳动力进而较少人力成本并加快加工效率的装置。
本发明公开了一种木塑复合材料的制造方法,包括装置主体以及设置于所述装置主体内的压实装置,所述压实装置包括设置于所述装置主体内的第一空腔,所述第一空腔的上侧内壁内固定设置有四组均匀分布的液压缸,所述第一空腔内可滑动的设置有第一滑块,所述第一滑块的上侧端面与所述液压缸之间配合连接有液压内柱,所述第一空腔的左右两侧内壁内相连通的设置有第二空腔,所述第二空腔内可滑动的设置有第二滑块,所述第二滑块的上侧端面上固定连接有延伸通入所述第一空腔内的第三滑块;本发明旨在设计一种能够自动的进行木塑复合材料加工而而仅需较少劳动力进而较少人力成本并加快加工效率的装置。
本发明公开了一种原生微/纳米级碳化钒和轻金属基非晶合金共强化镁合金复合材料及其制备方法,其主要步骤:将钒粉和石墨粉混合高能球磨得到原生碳化钒(V8C7)粉体;将镁粉/铝粉/钛粉与其它元素按一定比例混合高能球磨得到高晶化温度的镁基/铝基/钛基非晶合金粉体;将V8C7粉体按一定比例与非晶合金粉体混合并球磨;将V8C7与非晶合金的混合粉体按一定比例加入到镁合金粉体中,加入一定量酒精,在超声震荡下进行机械搅拌,充分混合均匀后真空烘干;将烘干的复合粉体进行高压压实,得到致密复合块体坯料,然后低温热压烧结;将烧结得到的复合块体进行热挤出,最后得到高强高韧原生微/纳米级碳化钒与非晶合金共强化镁合金复合材料。
本发明公开了一种高纯金属相二硫化钼阵列/碳纤维布复合材料及其制备方法和应用。该制备方法将碳纤维布处理的有亲水性后,以三氧化钼和硫代乙酰胺为前驱体,在乙醇与去离子水的混合溶液中,在碳纤维布上原位生长高高纯金属相二硫化钼纳米片,碳纤维布作为导电基底材料具有高强度、高模量、高长径比、高化学稳定性以及优异的导电性,使二硫化钼有规律地生长在导电基底上是充分暴露其活性位点,提高其电催化性能的有效手段,最终得到高高纯金属相二硫化钼阵列与碳纤维布复合材料,整个制备方法简单。
本发明公开了一种基于三重锁定的水合盐‑多孔载体复合材料及其制备方法和应用,所述水合盐‑多孔载体复合材料具有以下结构:掺杂有沉淀剂的水凝胶完全包覆于所述水合盐‑多孔载体复合物外,其中位于多孔载体的开放孔道开放端的水合盐与沉淀剂反应形成水不溶物原位沉淀,封堵所述开放端。原位生成的沉淀实现了多孔载体孔道内水合盐与水凝胶的隔离,避免了水合盐对水凝胶的盐析效应,使得水合盐在相变过程中可充分发挥其储放热性能。
本发明公开了一种羧基化凹凸棒复合材料及其制备方法和应用。本发明将凹凸棒/酸化凹凸棒与带有活性NH的硅烷偶联剂先进行硅烷化改性,可赋予凹凸棒表面大量的活性NH,活性氢能够与氯乙酸钠反应,从而赋予材料表面大量的功能羧基。所制备的羧基化凹凸棒复合材料用于重金属离子的吸附,其对三价铁离子具有独特的选择性,吸附量可达到400mg/g以上。
本发明公开了一种混合相增强镁基复合材料及其制备方法,该制备方法包括以下步骤:对镁合金粉、纳米金刚石颗粒、硼酸镁晶须进行预处理,制备得到混合粉末;对混合粉末及磨球钢球,混合球磨,制备得到球磨后的混合粉;然后进行真空热压成坯和热挤压处理。本发明制备得到的混合相增强镁基复合材料的摩擦磨损性和拉压对称性得到显著改善。
本发明公开了一种石墨烯与轻金属基非晶合金颗粒共强化镁合金复合材料及其制备方法,该方法主要步骤为:通过改进的Hummers法制备还原氧化石墨烯;将轻金属镁粉或铝粉或钛粉与其它一些合金元素按一定比例混合球磨得到高晶化温度的镁基/铝基/钛非晶合金颗粒粉体;再将制得的石墨烯和轻金属基非晶合金颗粒粉末按一定比例加入到镁合金粉末中,再加入一定量的酒精,利用超声辅助方式进行机械搅拌,充分混合均匀后再真空烘干;将烘干得到的复合粉体置于模具中进行高压压实,得到致密复合块体坯料,然后进行低温热压烧结;将烧结得到的复合块体以高加压比进行热挤出,最后得到高强高韧的石墨烯与轻金属基非晶合金颗粒共强化镁合金复合材料。
本发明属于材料加工技术领域。一种金属及金属基复合材料成形装置,包括剪切辊1、液压缸2、挤压杆3、挤压筒4,所述剪切辊1外侧设置有液压缸2,所述液压缸2前端设置有环形的挤压杆3,还包括设置于所述剪切辊1外侧的位于挤压杆3前端的挤压筒4,挤压筒4端部设置有挤压筒端盖7,所述剪切辊1侧边与挤压筒4之间形成成形腔I13,所述剪切辊1前端与挤压筒端盖7之间形成成形腔II12,所述挤压筒4外侧设置有加热装置6,挤压筒端盖7上设置有扩展挤压模具9,所述剪切辊1及挤压筒4可旋转。本发明工艺流程短,适用面广,可以加工液态、半固态、固态粉末状、固态块状等金属及金属基材料。可得到纳米晶或超细晶组织的高性能产品。
本发明公开了一种凹凸棒功能复合材料的制备方法,包括以下步骤:制备酸化凹凸棒;将凹凸棒或酸化凹凸棒分散于溶剂中,加入二异氰酸酯和催化剂,加热回流反应,冷却后离心,并用溶剂分散、离心和干燥后得到异氰酸酯基化凹凸棒;将异氰酸酯基化凹凸棒分散于溶剂中,加入氨基化合物和催化剂加热回流反应,并用去离子水分散、离心和干燥后得到富含氨基凹凸棒;随后将富含氨基凹凸棒分散于去离子水中,并加入氯乙酸钠和氢氧化钠,搅拌反应,待反应结束后离心、分散及干燥得到。本发明制备的凹凸棒功能复合材料可用于重金属离子的吸附,其对三价铁离子的吸附量可达到460mg/g以上。
本发明涉及一种用半水石膏和无水石膏复合材料固沙植生的方法。该方法采用以下的步骤:A.配置一定质量百分含量的凝固剂:半水或无水石膏10-40%,吸水剂:膨润土8-20%,营养剂:食草类动物粪便30-60%,造空剂:木屑粉10-20%,追肥剂:尿素1-5%,B.将上述配料用机械搅拌的办法搅拌均匀;C.选择适当的草种和上述物料搅拌均匀,铺洒于沙面形成1-2厘米厚层,最后洒水渗透固沙复合层即可。本发明所提供用于沙漠化治理固沙植生的方法,使用这种材料可以促进沙漠植物生长,显着提高沙漠植物的存活率,不但对固定流动的沙漠,吸水保水性能好,耐久性好,抗冻融稳定性,耐风蚀性和耐候性良好,不污染环境,作用持久,无毒性且植物迅速生长的特点,有利于提高对沙漠固沙植生的效率。
本发明涉及一种新型光稳定剂及其制备方法、以及具有该光稳定剂的耐光老化聚丙烯复合材料。该光稳定剂的通式表示为[M(Ⅱ)1‑xM(Ⅲ)x(OH)2]x+Ax/nn‑·mH2O,其中,M(Ⅱ)为二价金属离子Mg2+和Ni2+,M(Ⅲ)为三价金属离子Fe3+,A为‑n价的阴离子,x是M(Ⅲ)与[M(Ⅲ)+M(Ⅱ)]的摩尔比,m是结晶水量,x=0.1~0.5,A为OH‑、CO32‑,m=0~10。本发明解决了为得到光稳定剂需要在层状双氢氧化物层间插入有机紫外吸收剂的问题,从而获得稳定性较好的耐光老化聚丙烯复合材料。
本发明公开了一种集成化的木塑复合材料的制造方法,包括装置主体以及设置于所述装置主体内的压实装置,所述压实装置包括设置于所述装置主体内的第一空腔,所述第一空腔的上侧内壁内固定设置有四组均匀分布的液压缸,所述第一空腔内可滑动的设置有第一滑块,所述第一滑块的上侧端面与所述液压缸之间配合连接有液压内柱,所述第一空腔的左右两侧内壁内相连通的设置有第二空腔,所述第二空腔内可滑动的设置有第二滑块,所述第二滑块的上侧端面上固定连接有延伸通入所述第一空腔内的第三滑块;本发明旨在设计一种能够自动的进行木塑复合材料加工而而仅需较少劳动力进而较少人力成本并加快加工效率的装置。
本发明涉及一种石墨烯/二氧化钛复合材料及其制备方法,该制备方法包括以下步骤:称取二氧化钛放入到电弧放电装置的阴极和阳极电极的中间;向该电弧放电装置通入氩气和空气的混合气体;开启该电弧放电装置使其放电,并调节电流大小和控制反应时间;放电结束后制得石墨烯/二氧化钛复合材料。本发明方法中,电弧放电使原料的反应速度加快,合成时间短。本发明方法的工艺简单、操作方便,实用性强。
本发明公开了一种蜂窝状多孔锡碳复合材料的制备方法,该方法以氯化钠为模板,将碳源的水溶液与锡盐的水溶液混合后在水浴环境中通过溶剂蒸发形成含有许多小气泡的粘稠热熔胶;然后利用真空干燥箱使粘稠热熔胶在负压状态下迅速的膨化和固化,再高温热解碳化,水洗去除模板,干燥获得了蜂窝状多孔锡碳复合材料,该复合材料具有分级多孔结构,孔隙率高、均匀性好、比表面积大,纳米锡颗粒尺寸均匀,分散性高,与碳材料结合紧密等优点,可应用于锂离子电池、燃料电池、催化剂等领域。本发明制备工艺简单,条件温和无污染,对设备要求低,易于产业化生产。
本发明属于石墨基一水碳酸钠水合盐复合材料制备领域,具体涉及一种石墨基一水碳酸钠复合材料制备方法。包括以下步骤:1)将可膨胀石墨加热处理;2)将十水碳酸钠置于恒温水浴锅中;3)向步骤2)处理后的溶液中加入羧甲基纤维素钠,搅拌;4)将步骤1)处理的膨胀石墨投入到步骤3)的溶液中得到混合物;5)将步骤4)得到的混合物置于烘箱中干燥,得到复合材料。本发明利用十水碳酸钠物理吸附于膨胀石墨一定温度下失水获得石墨基一水碳酸钠,通过向膨胀石墨中添加适量羧甲基纤维素钠,从而促进了无机水合盐的附着。
一种原位WC颗粒与铁基非晶合金相协同强化锰钢基复合材料及其制备方法,其主要过程:将钨粉(W)和炭黑或石墨粉(C)混合,高能球磨后低温煅烧得到高反应活性的W‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉后,进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,再利用高压压制得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
一种原位TaC颗粒与铁基非晶合金协同强化中高锰钢基复合材料及其制备方法,其主要制备过程:将钽(Ta)粉和炭黑或石墨(C)粉混合,高能球磨后得到高反应活性的Ta‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉,再进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,然后利用高压压制得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
一种镶嵌原位碳化物颗粒的3D非晶合金网络增强硼钢基复合材料及其制备方法,其主要制备过程:将强碳化物单质金属粉与炭黑或石墨粉混合,高能球磨后低温煅烧得到高反应活性中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉、硼粉、钼粉和镍粉,再进行高能球磨,并使部分铁粉达到纳米尺度,然后利用高压得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
一种原位TiC颗粒与大比例非晶合金共强化锰钢基复合材料及其制备方法,其主要制备过程:将钛粉(Ti)和炭黑或石墨粉(C)混合,高能球磨后低温煅烧得到高反应活性的Ti‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉,再进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,然后利用高压压制得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
提供了一种抗紫外和抗阻燃性能增强的PVC复合材料的制备方法,包括以下步骤:S1、表面改性剂配制:在机械搅拌的条件下,将硅烷偶联剂KH570与聚乙二醇PEG6000充分混合,得到表面改性剂;S2、无机材料的配制:将CPE135A、氯化石蜡、TiO2、Mg(OH)2按照一定比例充分混合,得到无机材料;S3、无机材料的改性:将步骤S1、S2制得的表面改性剂与无机材料混合、反应,然后对混合产物进行分散、离心、过滤、水洗并干燥;S4、功能型PVC复合材料的制备:将步骤S3制得的改性无机材料与PVC充分混合,利用模压成型工艺制备得到抗紫外和抗阻燃性能增强的PVC复合材料。
一种原位NbC颗粒与铁基非晶合金协同强化锰钢基复合材料及其制备方法,其主要制备过程:将铌(Nb)粉和炭黑或石墨(C)粉混合,高能球磨后低温煅烧得到高反应活性的Nb‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉,再进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,然后利用高压压制成致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
一种原位V8C7颗粒与铁基非晶合金协同强化锰钢基复合材料及其制备方法,其主要制备过程:将钒(V)粉和炭黑或石墨(C)粉混合,高能球磨后低温煅烧得到高反应活性的V‑C中间相合金粉体;再利用高能球磨使中间相合金颗粒表面包覆镍层;再加入铁粉和锰粉后进行高能球磨,并使部分铁粉和锰粉达到纳米尺度,然后利用高压压制得到致密块体坯料;将坯料放入真空双室热处理炉中进行真空烧结,烧结完成后快速气冷,得到最终所需的复合材料。该复合材料表现出超高的弹性模量、强度、硬度及良好的塑韧性,且工艺简单、易于规模化,适用于开发在高温、高应力、硬磨料磨损等工况下具有长使役寿命的齿轮、轴承、连杆、衬板、轧辊、刀具、模具等产品。
中冶有色为您提供最新的青海有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!