本发明涉及一种制备多孔锂离子电池正极材料的方法,以铁盐、锂盐和磷酸盐为原料,以模板剂为模板,经配料后装入容器中,在60-80℃的温度下,使其晶化水热反应1-7天,将其蒸干后在保护气氛下升温至600-800℃,恒温烧结10-24小时,在炉内自然冷却至室温便得到多孔的磷酸铁锂。该制备方法能有效地控制所得磷酸铁锂粒径的大小,直接合成纳米级的磷酸铁锂/碳复合材料,产品的粒径大小在300-700纳米之间;所得多孔磷酸铁锂材料规则纳米孔隙的存在能提高其扩散性能和电导率,提高其电化学性能,因为孔状相互交联的结构提供了更多的锂离子活性位置,确保了离子有较好的扩散性能,此外还可以减轻循环过程中因体积膨胀引起的材料本身结构的破坏,保证了电池的循环寿命。
本发明公开一种机械活化辅助喷雾热解回收废旧锂电池正极的方法,采用氢氧化钠溶液实现铝箔溶解并与固体废旧正极材料分离,按照磷酸铁锰锂化学计量比补加锂元素和磷元素,添加碳源和有机酸进行球磨,最后采用喷雾干燥处理前驱浆料得到前驱体粉末并在保护气氛下两段煅烧得到高性能磷酸铁锰锂/碳正极材料;本发明将废旧锰酸锂和磷酸铁锂电池正极材料直接制备出性能更好的磷酸铁锰锂/碳正极材料,过程简单,污染少,同步实现废旧磷酸铁锂电池和锰酸锂电池的高效回收及磷酸铁锰锂/碳正极材料的低成本制备。
本实用新型公开了太阳能路灯锂电池模块,包括模块盖、模块体、锂电池固定架、锂电池组,模块体后端部两侧连接有模块盖旋转销,模块盖旋转销上装配有模块盖,模块体内部边侧设置有真空区,另一侧上端设置数据线区,下端设置锂电池固定架,锂电池固定架上均匀安装有锂电池组,数据线区与锂电池组之间连接有连接端,模块体边侧设置有设备输入端,设备输入端上部设置有设备输出端,模块体底部两侧均固定有模块固定板,模块盖内部设置有密封垫。有益效果在于:采用箱式锂电池模块组对太阳能路灯进行充电放电,大大提高锂电池组的使用寿命和强度,内部模块分配合理,保护性和密封性良好,大大提高其使用效果。
本实用新型公开了一种便携式锂电池手电筒,涉及照明技术领域。该便携式锂电池手电筒,包括电源外壳,所述电源外壳内腔的右侧固定安装有锂电池,所述电源外壳顶部的左侧贯穿设置有电源接口,所述电源外壳的右侧固定安装有太阳能电池板,所述电源外壳的底部固定连接有防滑胶皮,所述防滑胶皮的底部固定连接有照明装置,所述锂电池分别与电源接口和太阳能电池板电性连接。该便携式锂电池手电筒,通过照明装置的改良,以及锂电池、电源接口和太阳能电池板的配合使用,使得手电筒可以很好的控制照明灯的工作功率,避免了由于照明灯工作功率过大而导致的照明灯使用寿命缩短,同时避免了由于照明灯工作功率过小而导致的光照效果不佳。
本发明涉及电极材料修复技术领域,尤其涉及一种废旧锂离子电池正极材料的修复方法。本发明提供了一种废旧锂离子电池正极材料的修复方法,包括以下步骤:在保护气氛下,将废旧锂离子电池正极材料、锂片、固体氧化剂和无水乙醇混合,进行修复,得到修复后的锂离子电池正极材料;所述修复的温度为20~70℃;所述废旧锂离子电池正极材料中的锂原子的物质的量与其它金属原子的总物质的量之比为(0.5~1):1,且不能为1:1。所述修复方法在常温下即可进行,且不需要严格控制锂用量。
本发明公开了一种高性能三元锂离子电池正极材料,由表面包覆偏铝酸锂的镍钴锰酸锂制备而成,包括氢氧化镍钴锰前驱体的制备、表面包覆氢氧化铝的氢氧化镍钴锰前驱体的制备和表面包覆偏铝酸锂的镍钴锰酸锂三元正极材料的制备步骤。本发明基于锂离子电池的三元正极材料,表面偏铝酸锂包覆层均匀、致密,很好地抑制电解液对基体三元正极材料的腐蚀以及副反应的发生,提高了三元正极材料的结构稳定性,进而提高材料的循环寿命及安全性能。本发明及其制备工艺过程简单、易操作、成本低、且不涉及有机溶剂或试剂,即可原位形成均匀偏铝酸锂包覆层,不需要后续处理。本发明绿色环保、适合于工业化生产,是一种具有产业化前景的高性能锂离子电池新技术。
本实用新型提供一种充液防爆控温锂离子电池,包括其上带正、负极引出端的锂离子电池单体,其特征在于在锂离子电池单体外围设置一带空腔的外壳,并在外壳空腔内注入绝缘液体。使锂离子电池始终工作在与空气隔绝和可控温的绝缘液体中,有效防止电池工作过程中因出现异常,而有可能导致锂与氧气接触,从而引起燃烧、爆炸的问题,同时有效防止因电池外部因素造成温度升高而引起锂离子电池燃烧、爆炸等安全隐患,为锂离子电池,尤其是使用在储能电站、汽车、轮船及其它工业应用中的大容量和超大容量锂离子电池提供安全运行保障,延长电池使用寿命,提高电池的电性能和安全性能。
本发明公开了一种掺锗草酸亚铁锂离子电池复合负极材料及其制备方法,属于锂离子电池负极材料技术领域;本发明所述的复合负极材料为以片状或杆状多层多孔草酸亚铁为模板,在其表面均匀富集纳米球状锗颗粒,锗的含量为0.1%~30%。本发明通过强阴离子聚电解质处理后的锗粉表面带有负电荷与亚铁盐溶液混合,并将亚铁离子静电吸附于锗粉表面,进而逐滴加入草酸,在锗粉颗粒周围自组装形成掺锗的FeC2O4/Ge·2H2O前驱体;在惰性气氛保护下,经低温热储锂,前驱体失结晶水后得到掺锗的草酸亚铁复合材料。本发明很好地解决了现有技术中草酸亚铁负极材料电导率低、锂离子迁移速率慢、首次不可逆容量高、循环性能差等问题。
本发明涉及一种真空铁热还原制取金属锂的方法,以纯度≥98%碳酸锂作为原料,以纯度为≥98%的铁粉作为还原剂,将铁粉和碳酸锂混合,再制成球团或片状;置于抽真空下,进行煅烧,保温,再在真空下,升温,被还原出的金属锂以气态挥发,冷凝挥发的气体后即得到金属锂。本发明以碳酸锂为原料,以资源丰富且价格低廉的铁作为还原剂,本方法具有流程短、工艺简单、操作简便、成本低、环境污染小等特点。
本发明公开了一种基于STM32测量锂电池剩余电量(State of Charge)的电路,主要包括:测量电路、STM32芯片、FLASH芯片、LCD液晶屏以及供电电路。测量电路一端连接锂电池充、放电回路,一端连接STM32芯片引脚。STM32芯片用于测量锂电池剩余电量(SOC)程序的运行。FLASH芯片连接STM32芯片的输出端,用于系统掉电时保存当前锂电池电量值。LCD液晶屏接STM32芯片输出端,用于显示当前锂电池剩余电量(SOC)。供电电路给STM32芯片、FLASH芯片、LCD液晶屏供电。先使用STM32的ADC测量分别串联在锂电池充电、放电回路的两个定值电阻电压值,然后间接得到两个回路的电流并对电流进行滤波,最后两路电流对时间进行积分并作差得到锂电池剩余电量(SOC)。
本发明公开一种富锂锰基正极材料的制备方法,属于锂离子电池正极材料领域。本发明所述方法为:将硫酸锰、硫酸钴混合配制成盐溶液,将碳酸钠和氨水混合配制成碱溶液;将盐溶液和碱溶液同时匀速滴加到反应釜进行反应,将产生的沉淀经过滤、洗涤、干燥得到碳酸盐前驱体;将碳酸盐前驱体与碳酸锂和碳酸钠的混合物在球磨机中充分研磨,煅烧得到钠盐的中间产物;将中间产物和锂盐(硝酸锂和氯化锂)混合物在球磨机充分混合,并250~300℃进行离子交换反应3~5h,将得到产物过滤、洗涤、真空干燥即可得到最终富锂锰基正极材料。本发明制备正极材料合成方法简单,可实现大规模生产,电学性能良好,并且100圈循环后的其形貌结构变化不明显。
本发明公开了一种纳米级尖晶石型掺镍锰酸锂材料制备方法。该方法包括如下步骤:按照分子式LiNi0.08Mn1.82O4的锂、锰和镍离子摩尔比1:1.92:0.08,准确称取锂盐、锰盐和镍盐于烧杯中,用适量蒸馏水在50℃搅拌溶解形成均一混合溶液后,搅拌下逐滴加入氧化剂,保温5‑15min。在100℃条件下恒温加热使溶液蒸发掉一定体积的水分,并转移至瓷坩埚中。将盛有溶液的瓷坩埚置于150℃的程序升温箱式电阻炉中保温加热5min,然后在400℃空气气氛下燃烧反应30‑60min,最后在500℃保温1‑2h,冷却后研磨。将研磨后的粉末在600‑700℃二次焙烧并保温3‑6h,再次研磨得最终产物。本发明所制备的正极材料具优异的循环稳定性。
本实用新型公开了一种软包锂电池PACK生产用限位输送装置,包括装置本体、正激光位移传感器和单片机,所述装置本体的底部固定有第一支撑底座,且第一支撑底座的上侧设置有传送平台,并且传送平台的上端安装有传送带,所述传送平台的两侧预留有固定槽,且固定槽的内部安装有支撑杆,并且支撑杆的一侧设置有转轮,所述转轮的外侧套设有导向带,且传送平台的一侧上端面安装有固定杆,并且固定杆的顶部固定有挡板,所述正激光位移传感器安装在挡板的中间。该软包锂电池PACK生产用限位输送装置,不仅加强了对锂电池运输时的稳定,防止锂电池在运输时改变方向,造成锂电池卡死,同时也加强了锂电池在移位时的稳定,防止锂电池掉落。
本发明涉及一种锂离子电池正极材料的制造方法,该法是先将锂盐和锰盐按一定的摩尔计量比进行配料,配好的物料在高速球磨机上进行机械活化和混料处理,再在低温下进行预处理,最后在高温下焙烧合成,得到尖晶石正极材料。采用高速球磨机进行机械活化和混料处理,保证了原料混合的均匀性,降低了合成温度,晶粒微小而均匀,通过两步合成法可使低温下合成的缺陷型尖晶石结构得到修复和完善,容易得到纯相的尖晶石正极材料,减小其高温容量衰减率,制成的尖晶石正极材料价格低廉,工艺流程简单,无污染,易于工业化规模生产。
本发明涉及一种尖晶石型锰酸锂的制备方法,该制备方法包括锂或锰醋酸盐或硝酸盐混合均匀,然后在温度102~108℃下进行加热,再在微波炉中在微波功率360~900W与微波功率密度90~250W/m2下处理5~30分钟,得到所述的尖晶石型锰酸锂。本发明利用微波加热内部加热特性,使整个体系同时达到点燃温度,体系快速发生自燃反应放出高热量,锰酸锂借助燃烧反应放出的热量快速结晶成型。微波加热不仅大幅度缩短了反应时间,而且降低了大量能耗;且该法工艺简单,成本低廉,有利于推广以及实现锰酸锂的高效工业化量产。
本发明涉及一种通过微波辐射回收废旧锂离子电池阳极中石墨与铜箔的方法,属于废旧锂离子电池回收技术领域。本发明将废旧锂离子电池经放电后,拆解出阳极集流体;将阳极集流体置于微波炉内,在保护气氛中,经微波辐射处理得到固体和烟气;固体筛分得到铜箔与回收的石墨,产生的烟气经氢氧化钠和活性炭吸附处理后排空。本发明方法工艺简单、清洁环保,成本低廉,不需要额外的试剂或产生额外的废酸废水,实现了锂离子电池阳极集流体中铜箔与石墨的快速分离回收,具有显著的工业化潜力。
本实用新型公开了一种太阳能路灯新型锂电控制装置,包括装置壳体,所述装置壳体的上端设置有防护板,所述防护板的前端外表面开设有插槽,所述防护板的下端外表面开设有通风槽,所述通风槽的内壁固定连接有下防水板,所述装置壳体的外表面固定连接有上防水板,所述装置壳体的上端外表面固定连接有限位柱,所述限位柱的上端外表面开设有螺纹孔,所述螺纹孔的内壁螺接有螺钉,所述防护板的上端外表面开设有通孔,所述装置壳体的上端外表面开设有安装槽;有利于方便锂电控制装置的散热,有利于对锂电控制装置在下雨天气使用时的防水,延长锂电控制装置的使用寿命,对防护板的安装过程较为便捷,提高锂电控制装置的使用效果。
本实用新型公开了一种易于缠绕的锂带卷芯,包括卷芯主体,所述卷芯主体的侧端外表面设置有锂带收卷环,所述卷芯主体的前端外表面设置有卷芯贯穿孔,所述卷芯贯穿孔的侧端外表面设置有限位孔,所述限位孔的前端外表面设置有外六角螺母,所述卷芯主体的前端外表面设置有弧形网状加强筋,所述卷芯主体的上端外表面设置有限位料口。本实用新型所述的一种易于缠绕的锂带卷芯,通过弧形网状加强筋可增加卷芯主体的承受力,使其不会因收卷过度的锂带出现弯曲形变的现象,影响了生产,通过高低不一的限位料口,可以避免锂带卷料在收卷时产生的空间间隙导致后期收卷出现脱落的现象。
本发明属于金属氧化物纳米材料和锂离子电池技术领域,具体为一种燃烧法纳米尖晶石型镍锰酸锂材料的快速制备方法。具体是将按顺序分别称取醋酸锂、醋酸镍和醋酸锰固体放于坩锅中,镍盐置于中间层,加热使物料熔融沸腾自然混合均匀,直至发生燃烧反应,冷却得到燃烧产物,再将燃烧产物焙烧保温,冷却得到纳米尖晶石型镍锰酸锂LiNi0.05Mn1.95O4材料。本发明采用的燃烧法制备纳米尖晶石型镍锰酸锂材料具有操作简单、合成速度快、成本低廉和易于实现规模化生产的特点。
本实用新型公开了一种锂电池用散热防震安装架,包括下支板,所述下支板和上支板上均设置有固定孔,且固定孔的外围设置有散热孔,所述散热孔之间通过连接槽相连接,且连接槽内安装有铜环,所述散热孔、连接槽和铜环在下支板和上支板上均有设置,且下支板上连接有连接杆。该锂电池用散热防震安装架,具备散热性能,且能锂电池停止供电后,将其上的余热吸收,从而使得该锂电池携带的热量快速的消散,进而有利于锂电池的使用寿命,同时具备防震功能,能将设备工作时,产生的震动动能吸收,以免该震动动能被传递到锂电池上,造成锂电池电极处连接松动,以至于锂电池供电故障,且能避免锂电池与上支板和下支板的连接出现松动,造成锂电池的松动。
本发明公开了一种由废旧锂离子电池正极材料再生制备类单晶三元正极材料的方法,包括步骤:将废旧锂离子电池镍钴锰酸锂正极材料和过饱和锂源溶液加入水热反应釜中,进行水热处理,将水热处理后料浆进行液固分离,得到粉末A;按照和废旧锂离子电池镍钴锰酸锂正极材料相同摩尔比,将新的镍盐、钴盐和锰盐配置成前驱体溶液,然后进行喷雾干燥,再经破碎后得到粉末B;将所述粉末B和所述粉末A以及添加剂混合,然后进行煅烧处理,得到煅烧产物C;将所述煅烧产物C与锂源混合,经固相烧结,得到再生的类单晶形貌的正极材料。本发明正极材料再生工艺成本低,无废水废气排放,有价金属能够高价值化利用,制备的类单晶正极材料振实密度高,性能稳定。
本发明属于锂离子电池制造技术领域,具体涉及一种锂离子电池粘接剂材料的清洁配料方法。本发明的特点在于,固态的锂离子电池粘接剂材料的包装袋可溶于配料过程所用的溶剂,并且锂离子电池粘接剂材料连同其包装袋一起与配料过程所用的溶剂相混合,是清洁的锂离子电池粘接剂材料配料方法。此方法可以减少固态的锂离子电池粘接剂材料配料过程的粉尘,还可以节约粘接剂材料配料过程的时间,也有利于保护工作场所工人的健康。
一种具备防爆功能的锂电池太阳能路灯,包括灯柱、LED灯、锂电池、锂电池防爆箱、控制器、光伏板;LED灯通过灯臂与灯柱连接;所述锂电池防爆箱设置在灯柱的顶部;锂电池防爆箱的顶部设置有锂电池防爆箱;所述锂电池防爆箱内部设置有锂电池、控制器;控制器与LED灯、光伏板、锂电池连接。本实用新型为锂电池提供防爆保护、附带具备保温功能、方便维护的设计。可以提高路灯整体的安全性,降低锂电池的衰减速度,调高路灯整体的使用寿命。
本发明公开了一种一体化全固态锂电池结构的制备方法,其特征在于采用正极活性物质与磷酸钛铝锂(LATP)固态电解质制备复合电极,通过流延法将制备的复合电极、磷酸钛铝锂、锂镧锆氧(LLZO)进行流延制备膜生胚;将膜生胚进行叠层热压、共烧结制备非对称固态电解质陶瓷膜,其中,复合电极层为致密结构,LATP固态电解质层为超薄致密结构,LLZO固态电解质层为梯度多孔结构;之后通过热熔手段将锂金属渗透入梯度多孔的LLZO固态电解质中,从而形成一体化全固态锂电池。本发明在极大程度上降低了全固态锂电池中存在的界面阻抗问题,利用各项性能稳定的LLZO解决了LATP与锂金属间存在的副反应问题,达到了提升固态电池的循环寿命与能量密度的目的。
本发明涉及一种水热法制备磷酸锰锂基复合正极材料的方法,属于锂离子电池电极材料技术领域。将锂源、锰源、铁源、镁源和磷源按照化学计量比混合得到混合物,然后加入水形成溶液或悬浮液,溶液或悬浮液中锂离子浓度为0.1~2mol/L;将得到的溶液或悬浮液加入pH调节剂调节pH为6~10,然后在水热反应釜中在温度为160~220℃条件下水热反应2~20h,水热反应完成后离心分离得到固体产物,固体产物干燥后得到磷酸锰锂基复合正极材料,即LiMn0.8Fe0.2‑xMgxPO4复合正极材料,该方法只要按LiMn0.8Fe0.2‑xMgxPO4(0≤x≤0.05)的计量比配料,无需锂过量,通过水热反应即可合成高结晶度的LiMn0.8Fe0.2‑xMgxPO4正极材料。
本发明公开一种废旧钴酸锂正极材料短程再生协同高电压改性的方法,按照LiCo1‑x‑yCexMgyO2的化学计量比,将废旧锂离子电池正极材料、纳米级锂源、纳米级铈源、纳米级镁源研磨混合得到混合物;将纳米级混合材料在空气氛围下进行两次煅烧,得到化学通式为LiCo1‑x‑yCexMgyO2的再生改性后的锂离子电池正极材料;本发明采用废旧的锂离子电池正极材料为原料,是资源的再生利用,并且在制备过程中在加入少量的锂源和改性元素同步进行;本发明的制备方法短程高效、成本低廉、易于施行且符合当下市场需求。
本发明涉及锂离子电池正极材料技术领域,尤其涉及一种长循环寿命磷酸铁锂复合材料、正极材料及其制备方法。本发明的长循环寿命磷酸铁锂复合材料包括碳微米管和磷酸铁锂材料,所述碳微米管具有中空内腔,所述磷酸铁锂材料填充于所述碳微米管的中空内腔中;通过上述方式,将碳微米管的中空内腔作为磷酸铁锂材料的容器,利用碳微米管的笼状结构抑制填充在其中的磷酸铁锂材料在脱嵌锂过程中体积发生膨胀,避免磷酸铁锂材料因体积变化导致表面产生裂纹以及包覆层脱落,提升了磷酸铁锂复合材料的循环性能。
本发明涉及一种气体搅拌粗锂真空中温蒸馏脱钠的方法,含钠为0.1~1.5%的粗锂在真空炉熔化锅中受热融化,温度为200±10℃,熔化了的粗锂液体由阀门进入真空炉,升温使真空炉中的液体粗锂温度达到400~520℃,真空度达到1-5Pa,通过气体分体器向锂液中冲入惰性气体,使锂液在气体搅拌下缓慢翻滚,此时粗锂中的钠开始蒸发,3-8小时后锂液中的钠含量达到要求,经过滤铸锭、得到纯金属锂,本发明具有工序合理,流程简单,能耗低和回收率高的特点。
中冶有色为您提供最新的云南昆明有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!