本发明公开了一种基于FPGA控制的铁锂电池大电流均衡方法。设置一套铁锂电池控制系统,该系统包括至少两个串联的铁锂电池、与铁锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、铁锂电池电压检测模块、FPGA控制器和保护装置。FPGA控制器通过铁锂电池电压检测模块获得各个铁锂电池电压,当铁锂电池之间的均衡度大于设定阀值时,将电压最大的铁锂电池根据设定的时间通过大电流放电电阻放电。本发明采用FPGA作为主要均衡控制器,提高控制速度与稳定性。本发明采用接触器矩阵方式,实现对铁锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本发明方法操作简单,安全可靠,均衡效果好。
本发明提供了一种复合钛酸锂材料及其制备方法与应用。所述复合钛酸锂材料制备方法包括如下步骤:配制含有锂源、钛源和次氯酸盐的混合溶液;对所述混合溶液40~90℃并进行保温处理,再对所述混合溶液烘干处理后进行烧结处理,得到前驱体;将所述前驱体于惰性气氛中进行煅烧处理,后进行研磨处理,获得烧结粉体;将所述烧结粉体于含氮气氛中进行氮掺杂热处理,得到复合钛酸锂材料。本发明复合钛酸锂材料的制备方法利用氮取代了钛酸锂中的氧以及生成氮化的次氯酸盐改善材料的界面电导,使得锂离子传输通道更为通畅,利用氮化的钛酸锂提高所述复合钛酸锂材料表面的电子电导,提高所述复合钛酸锂材料中电子的传输速率。
本发明公开了一种有机电解质体系锂空气电池直接活化方法。(1)金属锂片为阳极,溶有0.5~2摩尔/升锂盐的有机溶剂为电解质溶液,硼硅酸玻璃纤维或尼龙66为隔膜,阴极为碳材料负载的1cm2碳纸。(2)充放电区间2 V~4.5 V,充放电电流密度1000 mA/g~5000 mA/g,充放电容量1000 mAh/g~5000 mAh/g。(3)充放电区间为2 V~4.5 V。(4)充放电电流密度为100 mA/g~800 mA/g。(5)活化的容量为25 mAh/g~800 mAh/g。(6)活化循环次数为5~40。本发明能达到提高锂空气电池循环次数的目的,能显著提高锂空气电池循环寿命。
本发明公开了一种废旧锂离子电池中电解液的回收方法,包括以下步骤:(1)将废旧锂离子电池置于密闭的放电池中,加水浸泡,收集浸泡过程中产生的气体进行冷凝;浸泡完成后分离固体和液体,得到放电后的电池和含电解液的溶液;(2)将放电后的电池进行干燥,收集干燥过程中产生的气体进行冷凝;(3)将干燥后的电池进行拆解,收集拆解过程中产生的气体进行冷凝;拆解完成后分别收集外壳、隔膜、正极片和负极片;(4)将冷凝得到的液体以及前述含电解液的溶液送入溶剂分离装置中,加水,待溶液分层,上层液体即为有机溶剂;下层液体送入沉淀工序进行沉淀,分别得到含锂溶液和氟化钙。本发明所述方法可有效回收电池中的电解液且能耗低。
本发明公开了镍钴锰酸锂的共沉淀-燃烧合成方法。(1)以镍、钴、锰的醋酸盐或硝酸盐为过渡金属源,氨水为络合剂,H2C2O4、(NH4)2C2O4、(NH4)2CO3或NH4HCO3为沉淀剂,通过共沉淀法合成Ni-Co-Mn复合碳酸盐或草酸盐前驱体;(2)将上述含Ni-Co-Mn复合碳酸盐或草酸盐的悬浮液直接烘干,加入硝酸锂或醋酸锂和少量的水或乙醇调成流变相态;(3)将上述呈流变相态的物料置于加热到400~600℃并恒温的电炉中进行燃烧合成反应;(4)将上述反应产物在600~1200℃回火处理,得到锂离子电池正极活性材料LiNixCoyMn1-x-yO2。本发明具有工艺简单、容易操作、节水节能、绿色环保,合成材料具有球状或类球状形貌、比容量高、循环性能好等优点。
本发明公开了一种铁锂电池大电流均衡FPGA控制系统。该系统包括至少两个串联的铁锂电池、与铁锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、铁锂电池电压检测模块、FPGA控制器和保护装置。FPGA控制器通过铁锂电池电压检测模块获得各个铁锂电池电压,当铁锂电池之间的均衡度大于设定阀值时,将电压最大的铁锂电池根据设定的时间通过大电流放电电阻放电。本系统采用FPGA作为主要均衡控制器,提高控制速度与稳定性。本系统采用接触器矩阵方式,实现对铁锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本系统结构简单,操作方便,安全可靠,均衡效果好。
本发明公开了一种粘合剂及其制备方法和含有该粘合剂的负极及锂离子电池。所述的粘合剂中,含有占粘合剂体系中固体成分总重量99.5~95.0wt%的聚酰胺酸和/或聚酰亚胺,占粘合剂体系中固体成分总重量0.3~3.0wt%的小分子有机芳香杂环类锂盐和占粘合剂体系中固体成分总重量0.2~2.0wt%的高聚物锂盐;所述的小分子有机芳香杂环类锂盐为不含苯环的嘧啶或吡啶或噻吩结构类锂盐,或者是它们中两种以上的组合;所述的高聚物锂盐为脂肪类高聚物锂盐和/或杂环类高聚物锂盐。本发明通过小分子有机芳香杂环类锂盐和高聚物锂盐同时改性聚酰胺酸和/或聚酰亚胺,使所得电池能够获得优异的首次充放电效率和循环稳定性。
本发明公开了一种铁锂电池大电流均衡ARM控制系统。该铁锂电池大电流均衡ARM控制系统包括至少两个串联的铁锂电池、与所述铁锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、铁锂电池电压检测模块、ARM控制器和保护装置。ARM控制器通过铁锂电池电压检测模块获得各个铁锂电池电压,当铁锂电池之间的均衡度大于设定阀值时,将电压最大的铁锂电池根据设定的时间通过大电流放电电阻放电。本系统采用ARM作为主要均衡控制器,提高控制速度与稳定性。本系统采用接触器矩阵方式,实现对铁锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本系统结构简单,操作方便,安全可靠,均衡效果好。
本发明涉及一种节能型锂电池,包括拉柄、门板、插头、导电线、锂电池外壳、保护壳、收纳壳、太阳能光伏板、逆变器、正极板、负极板以及电解质腔,所述逆变器右端固定有锂电池外壳,所述锂电池外壳右端穿过保护壳,并延伸至保护壳右侧,所述保护壳前端固定有门板,所述保护壳上端固定有收纳壳,所述收纳壳内部固定有太阳能光伏板,所述太阳能光伏板左端固定有拉柄,所述锂电池外壳内部左壁固定有电解质腔,所述正极板以及负极板均固定在电解质腔右端面上,所述正极板以及负极板上端均与导电线相连接,所述导电线右端穿过锂电池外壳,并延伸至锂电池外壳右侧,所述太阳能光伏板与逆变器电性连接,本发明节能效果好,使用寿命长,便于携带。
本发明公开了一种基于化学活化的剑麻炭纤维制备锂离子电池负极材料的方法。将剑麻纤维揉搓、洗涤和烘干;用质量分数为15-25%的ZnCl2溶液按ZnCl2和剑麻纤维的质量比为2-6:1浸渍比浸泡24小时,用去离子水冲洗,80-100℃经12-24小时烘干;置于真空管式电阻炉中,在气体流量为40ml/min的氮气气氛下炭化0.5-1小时,炭化温度为700-1000℃,升温速率为1-10℃/min,自然冷却后即获得黑色纤维状剑活性炭纤维。以锂片为正极材料、以制得的剑麻活性炭纤维经研磨后做为负极材料组装成锂离子电池,进行恒流充放电测试,结果显示,经过化学改性处理后的剑麻炭纤维相比于未经处理的剑麻炭纤维和市售活性炭有着更加优良的电化学性能。
本发明公开了一种低温固相反应制备锂离子电池正极材料LiMnPO4的方法。将锰源化合物、磷源化合物和锂源化合物按锰、磷、锂元素物质的量的比为1∶1∶1的比例混合,将此混合物在常温下混合均匀,然后进行机械活化,活化时间控制在1-10h内,然后加入有机碳源,与锰源化合物的物质的量的比控制在1∶1-2∶1之间,在常温常压条件下,在非氧化性气氛中以10-40℃/min的升温速度加热到300-800℃,并恒温煅烧4-12h;以5-20℃/min的速度降温,即得LiMnPO4。本发明直接采用二价锰化合物为锰源,并且加入有机碳源,在低温条件下制备出性能稳定的LiMnPO4,降低了合成条件以及成本;根据本方法制备出的LiMnPO4容量明显提高,并且放电性能优良。
本发明公开一种锂离子电池荷电状态动态评估与长效预测融合方法,首先利用扩展卡尔曼滤波法对锂离子电池的电池荷电状态进行评估,得到锂离子电池荷电状态SOCKEF;然后利用回声状态神经网络对锂离子电池的电池荷电状态进行预测,得到锂离子电池荷电状态SOCESN;最后对锂离子电池荷电状态SOCKEF和锂离子电池荷电状态SOCESN进行加权融合,得到最终锂离子电池的电池荷电状态SOC。本发明提高了现有电池SOC检测方法的适应性和评估精度,克服单一方法进行SOC动态评估的局限性,针对性的选取基于模型和数据驱动的融合方法,兼顾SOC检测评估动态实时性和长期长效预测的需求。
本发明公开了一种Fe3O4‑MoO2@SFAC锂离子电池负极材料的制备方法,属于锂离子电池技术领域。所述制备方法包括:1)将剑麻纤维洗净剪成小段,将剑麻纤维进行前期处理,包括炭化和进行水热反应,得到SFAC;2)称取铁源、钼源、络合剂、缓冲剂和经过水热处理后的剑麻纤维活性炭粉,加入至去离子水溶解、混合均匀后转移至反应釜中,置于鼓风干燥箱进行水热反应,将反应结束后得到的样品经过滤、洗净、烘干、煅烧后即得到Fe3O4‑MoO2@SFAC锂离子电池负极材料。本发明制备的锂离子电池负极材料具有优良的电化学性能,其比容量较高且循环稳定性好。
本发明提供电动公交车锂电池远程监测系统,属于检测领域,包括电动汽车BECU模块、CAN总线模块、控制器模块、存储器模块、GPS模块、GPRS无线通信模块和监管中心模块;电动汽车BECU模块的输出端经CAN总线模块与控制器模块的输入端连接;存储器模块与控制器模块连接;GPS模块的输出端与控制器模块的输入端连接;GPRS无线通信模块的输入端与控制器模块的输出端连接;GPRS无线通信模块与监管中心模块无线连接;通过CAN总线模块接收电动汽车BECU模块传入的车体、锂电池组的实时信息,由GPRS无线网络传送传输到监管中心模块,实现对锂电池组进行预警和实时远程监测;解决锂电池组无法远程实时检测的问题。
本发明提供了一种改性镍钴锰酸锂三元正极材料及其制备方法与应用。所述改性镍钴锰酸锂三元正极材料的制备方法包括的步骤有:制备编织球型的镍钴锰酸锂三元材料;将所述镍钴锰酸锂三元材料粉体与稀土氮化物和锂氮混合物进行第一球磨混合处理,获得混合物粉体;将所述混合物粉体于氮氧混合气氛下,进行分段烧结处理。所述改性镍钴锰酸锂三元正极材料制备方法采用稀土氮化物与锂氮混合物包覆三元材料颗粒,有效提高了三元材料的容量发挥和循环保持率,提高了三元材料的氮化效果,更好的缓解材料的锂镍混排及材料表面多余的锂;同时氮化物包覆层减少和阻止电解液与活性材料的接触,降低不可逆的副反应,减少固体电解质膜(SEI)的形成。
本发明提供了一种复合型锂氧化物薄膜及其制备方法与应用。所述复合型锂氧化物薄膜的制备方法包括的步骤有:将锂氧化物靶材和能量密度贡献主体元素靶材在惰性气氛下进行共溅射处理,在基体上生长复合型锂氧化物薄膜。本发明复合型锂氧化物薄膜的制备方法将锂氧化物靶材和能量密度贡献主体元素靶材直接采用共溅射法沉积形成。使得生长的复合型锂氧化物薄膜具有界面电阻小的特性,而且可以减少固体电解质膜(SEI)的产生,减轻周期性体积变化的应力,保持锂离子嵌入/脱出过程中的结构稳定性。另外,所述制备方法有效保证生长的复合型锂氧化物薄膜化学性能稳定。
本实用新型公开了一种锂电池生产用封口机,涉及锂电池生产领域,包括底座,底座上表面左右两侧固定连接有支撑架,支撑架上端固定连接有固定杆,固定杆中间固定连接有旋转电机,旋转电机前表面连接有旋转杆,旋转杆前端固定连接有封口机箱,封口机箱内部上下两侧以及左右两侧分别安装有伸缩电机,伸缩电机内侧表面通过固定架进行固定,伸缩电机另一端固定连接有伸缩杆,伸缩杆另一端固定连接有连接板,连接板另一侧表面固定连接有加热块。本实用新型实现锂电池封口的自动化,确保了加热块对锂电池封口的效果,封口效果非常好,而且还大大增加了锂电池封口效率,有利于锂电池的批量生产,实用性强。
本发明提供一种锂离子/钠离子电池的负极材料钼锡双金属硫化物及其制备方法,属于锂电池技术技术领域。所述制备方法包括的步骤为:以商业化草酸锡微米棒为前躯体,通过简单的热处理制备含有多孔结构的二氧化锡微米棒;然后加入一定量的钼酸铵、盐酸多巴胺、乙醇和氨水溶液,搅拌反应之后,经过离心、干燥得到复合前躯体,再将复合前躯体在惰性气氛下进行硫化处理,自然冷却之后,即可得到锂离子/钠离子电池用棒状结构SnS/MoS2@C复合材料。本发明制备到的负极材料是具有棒状结构的钼锡双金属硫化物,且外侧包覆有碳层,进一步提高其作为负极材料的比容量、循环稳定性以及循环寿命。
本发明公开了一种复合掺杂结合原位聚合合成高性能磷酸铁锂正极材料的制备方法。以铁盐、磷酸盐、苯胺通过原位聚合法制得FePO4/PANI前驱体,再将FePO4/PANI前驱体、锂源、氟离子掺杂源和钒离子掺杂源混合后研磨充分,在氩气保护气下,于200℃-500℃下预烧4-6小时,冷却后再次研磨,于600℃-1000℃下烧结8-15小时得磷酸铁锂正极材料即LiFe1-xVx(PO4)(3-y)/3Fy正极材料,其中:x, y=0.01~0.1。本发明成本低廉,对环境友好,原位聚合抑制了颗粒的增长,复合掺杂促进了材料的离子扩散速度,并提高了其电化学性能。
本发明公开了一种含碘化银的硫化锂系固体电解质材料及其制备方法。所述的制备方法包括以下步骤:1)在气氛保护条件下,按质量百分比计,称取35?50%的硫化锂和余量的硫化磷,混合均匀,得到锂硫磷三元混合物;2)在气氛保护及安全红光条件下,取锂硫磷三元混合物及相当于其质量2?10%的碘化银,置于球磨罐中球磨,得到含碘化银的非晶态锂硫磷混合物;3)所得碘化银的非晶态锂硫磷混合物在气氛保护及红光条件下密封后,于真空或气氛保护条件下升温至120?200℃进行热处理,即得。采用本发明所述方法制备硫化锂系固体电解质材料时能够形成大量可用于锂离子扩散的原子空位,进而有效提升硫化锂系固体电解质的离子传导性能。
本发明涉及一种锂离子电池,具体为一种动力锂离子电池。本发明所 述动力锂离子电池,包括正极、负极、介于正极和负极之间的隔膜以及有 机电解液;其中:正极的活性材料为纳米级LiFePO4/C,纳米级LiFePO4/C 在正极混合粉料中占85~95%(质量);负极的活性材料为纳米级 Li4Ti5O12/C,纳米级Li4Ti5O12/C在负极混合粉料中占85~95%(质量);所述 的有机电解液以LiPF6为电解质,以EC和DEC为溶剂。与现有的作为电 动车动力电源的锂离子电池相比,本发明动力锂离子电池导电性能好、安 全性能高、放电平稳、循环寿命长,且具有优异的大电流充放电能力;非 常适合用作电动车的动力电源。
本发明公开了用于新能源船舶的锂离子电池‑镁空气电池混合动力系统,包括并联接入混合动力电池控制单元的锂离子电池组和镁空气电池组,锂离子电池组和镁空气电池组的内部分别设有锂离子电池控制单元和镁空气电池控制单元,其中,锂离子电池组通过混合动力电池控制单元连接第一电力推进单元构成第一供电电路,镁空气电池组通过混合动力电池控制单元连接第二电力推进单元构成第二供电电路,锂离子电池组还外接充电控制单元。这种系统,将锂离子电池和镁空气电池两者的优势充分发挥,锂离子电池保证船舶实际航行工况中的功率需求,镁空气电池可以单独的作为动力电源为驱动电机提供较小的功率需求,在锂离子电池电量不足时及时为其补充电量。
本实用新型公开了一种轻便提运型锂电池组,包括箱体,所述箱体的内部为中空结构,所述箱体四个侧面均设有便携组件,所述箱体的底端内壁两侧均固定安装有固定板,所述箱体的底端内壁固定安装有多个位于两个固定板之间的锂电池,且靠近固定板的锂电池与固定板固定连接,多个所述锂电池之间电性串联,所述箱体的顶部固定安装有保护盖,所述箱体的一侧固定安装有防水壳,所述箱体的一侧固定安装有位于防水壳内部的接线板,通过压紧组件可以对锂电池进行压紧,使其更加稳定的固定的在箱体的内部,散热组件可以对箱体的内部进行散热,延长锂电池的使用寿命,便携组件可以便于箱体进行移动,防水壳对接线板进行保护防止进水产生短路。
本发明公开了一种二维碳化钛掺杂氢化铝锂储氢材料,由氢化铝锂和二维碳化钛Ti3C2混合机械球磨制得,二维碳化钛Ti3C2由Ti3AlC2和氢氟酸反应制得。其制备方法包括:步骤1,二维Ti3C2的制备和步骤2,二维碳化钛掺杂氢化铝锂储氢材料制备。本发明的储氢材料在二维Ti3C2催化作用下,初始脱氢温度为43‑68℃,比纯氢化铝锂降低了129‑154℃,其总放氢量达到4.6‑7.2 wt%,其初始脱氢温度比原氢化铝锂降低了148.2℃;在150℃时,15分钟能放出3.7 wt%氢气;在200℃时,15分钟能放出5.3 wt%氢气。因此,本发明的储氢材料具有优异的储放氢性能,制得的二维Ti3C2能显著改善氢化铝锂的放氢性能,使得其在较低温度下表现出优异的放氢性能。
本发明公开了一种锰酸锂电池大电流均衡控制系统。该锰酸锂电池大电流均衡控制系统包括至少两个串联的锰酸锂电池、与所述锰酸锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、锰酸锂电池电压检测模块、单片机控制器和保护装置。单片机控制器通过锰酸锂电池电压检测模块获得各个锰酸锂电池电压,当锰酸锂电池之间的均衡度大于设定阀值时,将电压最大的锰酸锂电池根据设定的时间通过大电流放电电阻放电。本发明采用单片机作为主要均衡控制器,降低系统的成本,并采用接触器矩阵方式,实现对锰酸锂电池的大电流放电,以提高均衡的可靠性,实现大电流放电,本系统操作简单,安全可靠,均衡效果好。
本发明公开了一种Mg2+双重掺杂提高镍酸锂正极材料电化学性能的制备方法。通过溶胶‑凝胶法结合高温焙烧的方法将Mg2+同时掺杂到镍酸锂LiNiO2的锂位和镍位,制备Mg2+双重掺杂镍酸锂Li1‑xMgxNi1‑xMgxO2(x≤0.1)。利用Mg2+在镍位的掺杂抑制合成过程中杂质的形成,利用Mg2+在锂位的掺杂抑制Ni3+由镍层迁移到锂层,避免镍锂混排的产生,提高锂离子在活性材料颗粒内部的扩散,从而提高镍酸锂的容量、倍率性能和循环性能。
本发明公开了一种锰酸锂电池大电流均衡FPGA控制系统。该系统包括至少两个串联的锰酸锂电池、与锰酸锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、锰酸锂电池电压检测模块、FPGA控制器和保护装置。FPGA控制器通过锰酸锂电池电压检测模块获得各个锰酸锂电池电压,当锰酸锂电池之间的均衡度大于设定阀值时,将电压最大的锰酸锂电池根据设定的时间通过大电流放电电阻放电。本系统采用FPGA作为主要均衡控制器,提高控制速度。本系统采用接触器矩阵方式,实现对锰酸锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电。本系统结构简单,操作方便,安全可靠,均衡效果好。
本发明公开了一种全回收废旧锂离子电池并实现金属分离的方法,将废旧锂离子电池芯粉碎,将所得黑色粉末加入空气焙烧,所得焙烧渣加入氨性溶液浸出,收集滤渣和滤液,滤液为含锂镍钴的液体;对所得滤液加热蒸发,收集蒸发的气体,返回氨浸工序,对蒸发后的液体过滤,收集滤渣,得到镍钴混合氢氧化物、氢氧化镍或氢氧化钴;再将滤液加热结晶,收集并干燥结晶产物,得到碳酸锂。该方法同时回收了废旧电池中的正极材料和负极材料,并实现了铁、锰、锂和镍钴的分离,回收过程没有二次污染,工艺流程短,成本低。
本发明公开了一种基于DSP控制的锰酸锂电池大电流均衡方法。设置一套锰酸锂电池控制系统,包括至少两个串联的锰酸锂电池、与锰酸锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、锰酸锂电池电压检测模块、DSP控制器和保护装置;DSP控制器通过锰酸锂电池电压检测模块获得各个锰酸锂电池电压,当锰酸锂电池之间的均衡度大于设定阀值时,将电压最大的锰酸锂电池根据设定的时间通过大电流放电电阻放电。本发明采用DSP作为主要均衡控制器,提高控制速度;本发明采用接触器矩阵方式,实现对锰酸锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本发明方法操作简单,安全可靠,均衡效果好。
本发明公开了一种基于单片机控制的三元锂电池大电流均衡方法。设置一套三元锂电池系统,该三元锂电池系统包括至少两个串联的三元锂电池、与所述三元锂电池数量相等的第一接触器和第二接触器、大电流放电电阻、三元锂电池电压检测模块、单片机控制器和保护装置。单片机控制器通过三元锂电池电压检测模块获得各个三元锂电池电压,当三元锂电池之间的均衡度大于设定阀值时,将电压最大的三元锂电池根据设定的时间通过大电流放电电阻放电。本发明方法采用单片机作为主要均衡控制器,降低系统的成本,并采用接触器矩阵方式,实现对三元锂电池的大电流放电,以提高均衡的可靠性,并实现大电流放电;本发明方法操作简单,安全可靠,均衡效果好。
中冶有色为您提供最新的广西桂林有色金属材料制备及加工技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!