本发明公开了CNTs/Ti仿生微纳米叠层复合材料的制备方法,属于钛基复合材料技术领域。本发明要解决CNTs在钛基体中难以均匀分布、CNTs与钛基体界面反应以及钛基复合材料强度‑塑性(韧性)倒置等技术难题。本发明方法:用HF溶液对钛箔预处理,将酸化处理的碳纳米管配置成CNTs悬浊液,通过电泳沉积法在钛箔表面沉积纳米级CNTs层即获得CNTs/Ti单层材料,然后将若干CNTs/Ti单层材料交替堆垛,最上、下层为纯Ti,再利用放电等离子烧结(SPS)结合低温轧制制备CNTs/Ti仿生微纳米叠层复合材料。本发明产品CNTs分散均匀,比基体多层纯钛相比,其强度提高20%~50%,断裂伸长率不明显降低。
碳掺杂硼氮纳米管/半导体氧化物复合材料及其制备方法和应用,它涉及纳米材料/氧化物复合材料及其制备方法和应用。本发明解决了现有的检测氮氧化合物气体的敏感材料室温下灵敏度低、响应速度慢的问题。本发明的复合材料由碳掺杂硼氮纳米管、过渡金属盐和沉淀剂制成;方法:催化剂、含硼材料和碳纳米管研磨后在氨气中合成,再提纯、焙烧后得到碳掺杂硼氮纳米管、然后将其分散于金属盐溶液中,再经沉淀剂改性、烧结得到复合材料。本发明是作为敏感材料用于对氮氧化合物气体的检测,可检测到的气体的最低摩尔浓度为970ppb,灵敏度≥2.37%,敏感膜从注入氮氧化合物气体至电阻完全稳定的时间≤20秒,响应速度快吸、吸附可逆性好。
纤维增强复合材料点阵夹芯板的模具及湿法制备工艺,它涉及一种模具及湿法制备工艺。本发明解决了目前没有专门制作纤维增强复合材料点阵夹芯板的模具以及利用该模具制备纤维增强复合材料点阵夹芯板的湿法工艺的问题。多个模具单体一正一倒相间平铺设置构成平板状,多个模具单体设置在两个固定条之间;步骤一、模具处理;步骤二、固定模具;步骤三、卷制纤维柱;步骤四、铺放纤维预浸料;步骤五、加压固化;步骤六、脱模。本发明的纤维增强复合材料点阵夹芯板的模具的结构简单、成本低廉、操作方便;利用本发明的湿法制备工艺制得的纤维增强复合材料点阵夹芯板与传统金属点阵夹芯板相比,具有更高的比强度和比刚度。
木材-有机-无机杂化复合材料的制备方法,它涉及一种复合材料的制备方法。本发明解决了现有方法制备的木质复合材料耐久性差、力学性能差的问题。本方法如下:一、单体的预聚合;二、稀溶胶的制备;三、真空-加压条件下实现稀溶胶对木材的浸注;四、对浸注完的湿木材加热,即得木材-有机-无机杂化复合材料。本发明制备的木材-有机-无机杂化复合材料具有较高的强重比,其硬度、耐磨性、抗弯强度、弹性模量、顺纹抗压强度等力学性能较木材最高可提高5倍;尺寸稳定性、防腐性能较木材可提高50~70%以上。此外,耐久性试验表明其热稳定性、耐候性也较木材得到明显改善。
碳纳米管硼化锆-碳化硅基复合材料及其制备方法,它涉及一种硼化锆-碳化硅基复合材料及其制备方法。本发明解决了现有硼化锆-碳化硅基复合材料易碎、低强度和烧结性能差的问题。本发明产品主要是由硼化锆、碳化硅和碳纳米管制成。本发明的制备方法如下:将碳纳米管超声分散在分散剂中,再加入硼化锆和碳化硅,再经球磨分散、烘干、研磨后,将得到的混合粉料装入涂有脱模剂的石墨模具中热压烧结。本发明制得的复合材料的相对密度可达98.1%~99.8%,断裂韧性比硼化锆-碳化硅基体增加了19%~44%,弯曲强度比硼化锆-碳化硅基体增加了13~85%,烧结温度可降至1800℃。
一种双功能氧催化剂钴/四氧化三钴/氮碳复合材料及其制备方法。本发明属于燃料电池和金属‑空气电池领域,具体涉及一种双功能氧催化剂钴/四氧化三钴/氮碳复合材料及其制备方法。本发明的目的是为了解决现有氧催化剂成本高以及催化活性不高的问题。产品:为具有菱形十二面体形貌的双功能氧催化剂钴/四氧化三钴/氮碳复合材料。方法:一、ZIF‑67前驱体的制备;二、Co@CoO/NC的制备;三、Co@Co3O4/NC的制备。本发明的复合材料表现出优异的双功能氧电极催化活性,同时在碱性溶液中核‑壳结构的Co@Co3O4纳米颗粒包封在石墨化的N掺杂多孔碳中表现出良好的稳定性。
本发明提供一种形状记忆聚合物复合材料柱形缓释机构,其特征在于,其包括转接部、端部卡套和形状记忆聚合物复合材料变形体,所述形状记忆聚合物复合材料变形体的两端分别与所述端部卡套固定连接,所述转接部固定连接在所述端部卡套上。与现有技术相比:本发明结构简单,可封装,工作过程可靠性高,应用领域广泛;通过对形状记忆聚合物复合材料变形体的不同选型和几何尺寸设计,使本发明适用于不同的预紧力及缓释要求,适应性强;通过对转接部的不同设计,使本缓释机构与其它连接装置更好地配合,应用范围更广。
本发明公开了一种抗菌型木塑复合材料,属于复合材料技术领域,所述木塑复合材料由以下重量份的原料制成:塑料颗粒35‑45份、玉米秸秆粉末35‑40份、玉米芯发酵产物15‑20份、乙酰柠檬酸三丁酯1‑2份、纳米银粉末2‑3份、聚苯乙烯接枝马来酸酐1‑2份,乙烯基三甲氧基硅烷1‑2份,异丙基三(二辛基焦磷酸酰氧基)钛酸酯0.5‑1份。本发明还公开了一种抗菌型木塑复合材料的制备方法,本发明制备的抗菌型木塑复合材料,先通过加入纳米银粉末使木塑复合材料具有抗菌性能,然后又在木塑复合材料表面形成了一层聚天冬氨酸/壳聚糖复合膜,通过最外层的壳聚糖的抗菌作用大大提高了木塑复合材料的抗菌性能。
本发明涉及一种高韧性耐磨轨道交通紧固件用玻纤/尼龙6复合材料及其制备方法。该发明材料是一种高韧性耐磨轨道交通紧固件用玻纤/尼龙6复合材料。制备该复合材料的技术工艺的创新性体现在:通过马来酸酐接枝聚烯烃弹性体和三元乙丙橡胶复配增韧玻璃纤维/尼龙6复合材料,以及利用空心玻璃微珠提高玻纤/尼龙6复合材料耐磨性,通过将玻璃纤维/尼龙6复合材料经双螺杆挤出机共混挤出,牵引、冷却、切粒后得到高韧性、高耐磨、耐高温的轨道交通紧固件用玻纤/尼龙6复合材料。在铁路交通产品配件领域,高韧性耐磨轨道交通紧固件用玻纤/尼龙6复合材料与传统尼龙6产品相比,可同时兼顾良好的高刚性和抗疲劳性,同时具有较高常温和低温韧性,以及耐磨性,适合在寒冻区域使用,另外玻璃纤维和空心玻璃微珠的添加可以降低生产成本和能耗,提高产品的附加值。
聚合物基复合材料自修复纳米级胶囊及其制备方法,它涉及一种复合材料自修复胶囊及其制备方法。它解决了目前已有的自修复微胶囊的尺寸大、难以在裂纹出现的早期发挥自修复作用的缺陷。纳米级胶囊由尿素、甲醛溶液、双环戊二烯、十二烷基苯磺酸钠、间苯二酚、正丁醇、辛烷、KH-560和去离子水制成。制备方法:一、制脲醛树脂预聚体;二、制微乳液;三、聚合反应;四、洗涤、过滤和干燥。本发明自修复纳米级胶囊粒径为100~800NM,可以自修复聚合物基复合材料早期产生的纳米级微小裂纹,防止了裂纹的继续扩展,具有减小聚合物基复合材料力学性能损失和延长使用寿命的作用。本发明制备方法简单、操作容易、设备性能要求低,易于推广。
一种以氮化铝粉为铝源的非晶和纳米晶硅硼碳氮铝陶瓷复合材料的制备方法,它涉及一种硅硼碳氮铝陶瓷复合材料的制备方法。它解决了现有制备硅硼碳氮铝材料的方法存在成本高、工艺复杂和难于制造大尺寸块体陶瓷材料的问题。方法:一、称取立方硅粉、六方氮化硼、石墨和氮化铝粉为原料;二、原料球磨,得到非晶态的硅硼碳氮铝粉末;三、非晶态的硅硼碳氮铝粉末进行气氛热压烧结即完成。本发明具有制备过程简单、工艺可控、能够制造大尺寸块体陶瓷材料、成本低、产量高,适于工业化生产等优点,可成为开发硅硼碳氮铝陶瓷复合材料在工业中应用的有效手段;所得以氮化铝粉为铝源的非晶和纳米晶硅硼碳氮铝陶瓷复合材料的力学性能好。
中空碳纤维布环氧树脂复合材料及其制备方法,它涉及碳纤维环氧树脂复合材料及其制备方法。本发明解决了现有的碳纤维环氧树脂复合材料密度大及碳纤维环氧树脂复合材料的过程中需要首先要对碳纤维进行复杂的改性的问题。本发明中空碳纤维布环氧树脂复合材料是由中空碳纤维布和环氧树脂胶制成的;方法:将尿素和乙二醇放入石墨坩埚中,然后在气氛烧结炉中制成中空碳纤维布;然后将中空碳纤维布浸渍在由双酚A型环氧树脂、丙酮和二乙烯三胺组成的环氧树脂胶中,取出后经压制和真空干燥后,得到中空碳纤维布环氧树脂复合材料。中空碳纤维布无需表面处理,复合材料密度为1.00~1.05g/cm3,可于宇宙飞船、人造卫星、航天飞机和导弹上。?
石墨烯/稀土氟化物纳米复合材料及其插层剥离合成方法,它涉及石墨烯/稀土氟化物纳米复合材料及其合成方法。石墨烯/稀土氟化物纳米复合材料由稀土盐溶液、膨胀石墨、表面活性剂溶液和氟源溶液制成。方法:一、取原料;二、将稀土盐溶液和膨胀石墨混合,然后在在加热条件下,加表面活性剂溶液和氟源溶液并搅拌,再进行热处理,获得物质A;三、物质A洗涤后真空干燥,再焙烧,即完成。本发明中石墨烯/稀土氟化物纳米复合材料,稀土纳米晶颗粒被成功地插入到石墨烯片层中间,稀土颗粒的形貌均一,尺寸为2nm~50μm;具有奇特的物理、化学和力学性能,制备的工艺简单、成本低、所需设备简单、生产安全性强,易于实现工业化生产。
本发明涉及一种碳化锆-碳化硅-氮化硅超高温陶瓷复合材料及其制备方法,属于陶瓷基复合材料领域。本发明解决了现有ZrC基超高温陶瓷难烧结和断裂韧性低的问题。本发明的碳化锆-碳化硅-氮化硅超高温陶瓷复合材料是由碳化锆粉末、碳化硅粉末和氮化硅粉末制成。制备方法如下:一、按体积百分比称取原料粉末,球磨湿混后得浆料;二、浆料蒸发烘干,经研磨后得混合粉料;三、混合粉料经热压烧结,随炉冷却后取出,即得碳化锆-碳化硅-氮化硅超高温陶瓷复合材料。本发明制备工艺简单、成本低,强韧化效果明显,所得材料的致密度均高于97.5%,其断裂韧性值比单相碳化锆陶瓷提高了近3.6~4.2倍。
一种利用气相扩渗法制备氧化钛纳米管/碳/氧化锰复合材料的方法,它涉及一种复合材料的制备方法。本发明的目的是要解决现有二氧化钛纳米管的电阻大和电容性能差的问题。制备方法:一制备表面光亮的钛片;二、对表面光亮的钛片进行清洗;三、对钛片进行电解反应;四、取出钛片后烘干得到氧化钛纳米管;五、排空气;六、气相扩渗,得到氧化钛纳米管/碳/氧化锰复合材料。本发明得到的氧化钛纳米管/碳/氧化锰复合材料的电容值是氧化钛纳米管的近乎10倍;本发明得到的氧化钛纳米管/碳/氧化锰复合材料的电阻减小了三个数量级,显著地提高了导电性。本发明可以获得一种氧化钛纳米管/碳/氧化锰复合材料的制备方法。
本发明提供的是一种填充复合焊料非连续增强铝基复合材料振动液相焊接方法。先用400#砂纸打磨非连续增强铝基复合材料待焊表面,并在丙酮中进行超声波清洗,待清洗后的非连续增强铝基复合材料晾干后,将其以对接接头形式装卡在卡具上,并将复合焊料放置在两待焊非连续增强铝基复合材料表面之间,加热使复合焊料充分熔化,并通过热电偶控制、保持焊接温度,启动振动装置及施加预压力,待振动到达预设时间之后,停止振动,同时加大压力,并保持恒定值,结束后将非连续增强铝基复合材料接头冷却。本发明的增强相能均匀分布、具有复合结构的焊缝,接头性能好,能实现铝基复合材料在非真空条件下的焊接,为实际生产提供更大的灵活性。
一种非连续增强金属基复合材料力学性能设计与预测方法,本发明涉及一种新材料设计领域的技术,具体是非连续增强金属基复合材料中增强体形状、含量、尺寸、取向的设计、复合材料结构建模及其变形行为、损伤行为和力学性能的预测方法。其操作流程包括:基于颗粒、短棒、晶须状增强体随机分布状态,构建非连续增强复合材料的三维几何模型;对三维模型进行网格划分;通过公式计算来修正金属基体和增强体的强度;将各组分的力学性能赋予模型;对模型施加边界条件及载荷;通过仿真技术计算复合材料的力学性能。该方法具有操作简便、适用复合材料体系广、精度高等特点。
本发明公开了一种高分散石墨烯增强环氧树脂基复合材料的制备方法,所述方法将三维石墨烯骨架通过真空灌注的方法制备复合材料浆料前躯体,再采用高速搅拌超声辅助的方法制备高分散石墨烯环氧树脂基复合材料浆料,最后通过梯度固化的方法制备高分散石墨烯增强环氧树脂基复合材料。本发明解决了现有方法无法将石墨烯高度分散到环氧树脂基体当中这一难题,扩展了其应用范围,基于石墨烯填充的环氧树脂浆料调配任意比例的石墨烯增强环氧高温树脂复合材料,在提升环氧树脂耐温的同时提升了环氧树脂基体力学性能,加大了环氧树脂基复合材料在应用领域竞争的优势,为纳米填充提供了一种新型的高分散制备方法。
一种钛酸铋钾压电陶瓷/自然铜复合材料及其制备方法,它涉及一种复合材料及其制备方法。本发明要解决现有的骨修复材料存在的骨诱导性差、功能单一及价格昂贵的问题。本发明的复合材料是由钛酸铋钾压电陶瓷粉体和自然铜粉体制成。本发明复合材料的制备方法:一、采用柠檬酸盐水热法制备钛酸铋钾压电陶瓷粉体,得到粒径为50nm~200nm的钛酸铋钾压电陶瓷粉体;二、采用醋淬方法煅制自然铜,得到的粒径为100μm~500μm的自然铜粉体;三、钛酸铋钾压电陶瓷/自然铜复合材料的制备,热压烧结制备钛酸铋钾压电陶瓷/自然铜复合材料。本发明应用在骨组织修复领域。
一种高伸长率的韧性复合材料表面膜及其制备方法,它涉及一种复合材料表面膜及其制备方法。本发明的目的是为了解决航空航天用的高柔韧性复合材料表面质量差,不能使基材表面均一平整,无孔隙,且在高形变下不能保持高表面质量的问题。一种高伸长率的韧性复合材料表面膜按重量份数由140份~180份二聚酸丙烯酸酯嵌段共聚物改性环氧树脂、10份~30份环氧树脂、5份~6份双氰胺、3份~5份固化剂、10份~20份轻质碳酸钙和5份~10份气相白炭黑A380制备而成。制备方法:一、称量;二、制备混合树脂;三、混炼;四、压制,得到高伸长率的韧性复合材料表面膜。本发明可获得一种高伸长率的韧性复合材料表面膜及其制备方法。
一种通过热固化温度得到C纤维增强树脂基复合材料残余应力的方法,涉及一种得到C纤维增强树脂基复合材料残余应力的方法。本发明是要解决检测残余应力的传统方法存在的投入巨大的人力、物力,且需要很长的周期以及实验成本高的技术问题。本发明的方法为:一、将C纤维增强树脂基复合材料的力学性能和热膨胀系数输入计算机;二、将热固化温度和室温输入计算机,并用数值模拟方法推导出C纤维增强树脂基复合材料单层板的残余应力分布,得到单层板间的接触关系;三、将单层板间的接触关系建立与C纤维增强树脂基复合材料残余应力的数值关系,然后计算,即完成。本发明应用于C纤维增强树脂基复合材料的测定领域。
一种自修复环氧树脂及自修复环氧树脂/碳纤维复合材料的制备方法,属于微胶囊和环氧树脂复合材料制备技术领域。本发明的目的是为了解决现有可修复树脂基复合材料修复效率,修复速率慢,甚至需要外界能量辅助修复的问题,提供一种新型负载双组份修复剂的双壳层微胶囊的制备方法,并进一步提供一种具有室温快速高效“一体化”自修复环氧树脂/碳纤维复合材料的加工方法。本发明提供的制备方法及策略为环氧热固性树脂基复合材料的树脂和树脂基与纤维界面的室温快速高效“一体化”自修复提供了全新的路径,实现了复合材料真正意义上的智能自修复。
氮化硼基陶瓷复合材料及其制备方法,它涉及一种氮化硼基陶瓷材料及其制备方法。本发明解决了现有氮化硼基陶瓷材料制备中存在的成本高、生产周期长以及制作大尺寸的产品困难的问题。本发明氮化硼基陶瓷复合材料由碳化硼粉、硅粉和稀释剂粉制成。方法:一、原料干燥;二、球磨混合;三、制作毛坯;四、毛坯自蔓延燃烧,即得到氮化硼基陶瓷复合材料。本发明的方法生产周期短,成本低,能够实现大尺寸产品的制作。
采用纤维编织预浸布制备复合材料点阵夹芯板的方法,它涉及一种制备复合材料点阵夹芯板的方法。本发明的目的是为了解决现有的纤维编织法无法整体成型、制成的点阵夹芯板的纤维杆件结构性能较且无法实现批量化生产的问题。方案一:制备模具、制备两向纤维编织预浸布、根据模具结构及尺寸,裁剪纤维编织预浸布、处理、组装下模、铺放纤维编织预浸布、铺放硅橡胶、合模、脱模、形成点阵夹芯结构;方案二与方案一的不同点在于下模的结构不同。本发明用于制备复合材料点阵夹芯板。
本发明属于高性能复合材料技术领域,具体涉及一种单质碳增强铝基复合材料的制备方法。本发明通过环氧树脂单体固化、热分解结合热压烧结、热挤出的制备方法,原位生成单质碳增强铝基复合材料。本发明中热挤出使单质碳弥散分布在铝合金基体中,减少单质碳团聚,阻碍合金基体发生的动态再结晶现象,使组织细化,进而提高铝基复合材料的强度,弥散分布的碳单质还帮助合金在变形时的晶界滑动,而且应变被大量的细小晶粒所分散,从而提高单质碳增强铝基复合材料的塑性变形能力;此外,由热挤出的温度较低,没有达到Al4C3的生成温度,能够减少Al4C3对复合材料力学性能的影响,制备得到具有优异的强度和韧性的单质碳增强铝基复合材料。
本发明涉及一种测试三维编织复合材料面外拉伸试验辅助粘接工装,包括阻制两个金属拉块与复合材料试件之间的相对滑移的滑移限位组件,和对两个金属拉块提供对复合材料试件的夹持力的夹持组件。本发明还提供了一种测试三维编织复合材料面外拉伸试验辅助粘接方法。本发明所提出的辅助粘接工装,通过滑移限位组件来防止两个金属拉块与复合材料试件之间的相对滑移,通过夹持组件对两个金属拉块提供对复合材料试件的夹持力,在防止金属拉块与复合材料试件错位的同时,也可以提升粘接效果;本发明所提出的辅助粘接工装,专为方形面外拉伸试件设计,填补了这一领域的空缺。
一种高聚物改性植物纤维水泥复合材料的制备方法,它涉及一种植物纤维水泥复合材料的制备方法。本发明解决了现有植物纤维水泥复合材料抗折强度小、弹性模量低的问题。高聚物改性植物纤维水泥复合材料按如下方法进行制备:一、高聚物助剂的制备;二、高聚物助剂的稀释;三、混合;四、定型、养护;即得到高聚物改性植物纤维水泥复合材料。本发明的高聚物改性植物纤维水泥复合材料具有抗折强度大、弹性模量高、密度小的优点。
一种高体积含量陶瓷增强铝基复合材料的焊接方法,涉及一种陶瓷增强铝基复合材料的焊接方法。本发明是要解决现有高体积含量陶瓷增强铝基复合材料钎焊钎料润湿性不好,钎焊接头强度低的问题。方法:一、对待焊面进行处理;二、溅射沉积Ti活性层;三、真空钎焊,随炉冷却至室温,即完成高体积含量陶瓷增强铝基复合材料的焊接。本发明钎料在母材表面的润湿性好,钎料与增强相能够形成有效连接,接头的剪切强度高。应用于陶瓷增强铝基复合材料焊接领域。
一种三维层状NiZnAl半导体多金属氧化物复合材料及其制备方法和应用,涉及一种半导体多金属氧化物复合材料及制备方法和应用。本发明为了解决现有NOx传感器在室温下灵敏度低、选择性差和成本高等问题。该复合材料由硝酸镍、硝酸铝、硝酸锌、表面活性剂和沉淀剂制成。制备:一、制备硝酸镍、硝酸铝、硝酸锌、表面活性剂和沉淀剂的合溶液;二、水浴加热;三、将得到沉淀过滤、洗涤和干燥得到前驱体;四、将前驱体煅烧。该复合材料作为敏感材料在制备气敏元件中的应用。该复合材料具有非常突出的选择性、具备吸附可逆性、灵敏度高。本发明适用于制备和应用半导体多金属氧化物复合材料。
一种内芯中空或者内芯异质的复合材料电缆芯,它涉及一种复合材料电缆芯。本发明解决了现有复合材料电缆芯的结构层为同质实心结构,导致成本高、弯曲载荷低的问题。本发明的复合材料电缆芯由外到内由绝缘层外层和碳纤维复合材料结构层组成,其中碳纤维复合材料结构层为管状结构,管状碳纤维复合材料结构层的内芯中空,或者管状碳纤维复合材料结构层的内芯填充不同于碳纤维复合材料结构层的质轻的异质材料。本发明的复合材料电缆芯与现有相同规格的实心复合材料电缆芯相比,自重减小,节省碳纤维复合材料30%以上,而且抗弯模量变大,弯曲载荷变大。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!