合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 合金材料技术

> 低摩擦系数高耐蚀固溶体合金涂层及其制备方法与流程

低摩擦系数高耐蚀固溶体合金涂层及其制备方法与流程

632   编辑:中冶有色技术网   来源:中国石油大学(华东);  
2023-09-20 13:59:39
一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法与流程

本发明涉及一种低摩擦系数高耐蚀性固溶体合金涂层以及制备该涂层的方法,属于表面涂层和表面改性领域。

背景技术:

在工农业生产中,很多装备与构件服役于摩擦、腐蚀的复杂工况环境,需要良好的摩擦相容性,即不能强度硬度太低,极易造成本身磨损,也不可以强度硬度太高,造成对磨件的损伤。在装备或构件表面制备减摩耐蚀涂层是提高材料表面摩擦相容性的重要途径。

Fe基非晶合金具有高的硬度、高的弹性模量及优良的耐蚀性能,且成本低廉,引起广泛关注。目前已开发出的Fe基非晶合金成分与Zr基、Pd基、Cu基非晶合金体系相比,其玻璃形成能力较差,难以作为大尺寸的结构件使用。将非晶合金与表面涂层制备技术相结合,制备非晶涂层可突破非晶合金尺寸上的限制,拓展非晶合金应用领域。目前,已有采用喷涂技术、电火花沉积技术和激光熔覆技术制备涂层的研究报道。然而,一般而言,喷涂非晶涂层的膜基结合力较差,电火花沉积非晶涂层的沉积层一般较薄,均难以适用于复杂工况条件。激光熔覆可制备与基体呈冶金结合的涂层,但由于激光熔覆的工艺特点,很难获得完全的单相非晶组织,一般获得的是非晶与金属间化合物组成的复相组织。由于第二相与非晶相的化学电位差,导致两者容易发生电偶腐蚀,降低非晶基复合涂层的耐蚀性。

固溶体与非晶态合金均具有化学近程有序性与长程无序性,都是Hume-Rothery相,他们之间存在内在关联性。非晶态合金可以看作是具有更高固溶度的单相固溶体合金。采用非晶合金成分材料制备固溶体合金涂层,即可保持非晶态合金高强度,高耐蚀性的特点,也可保持固溶体合金固有的特性,获得低摩擦系数,高耐蚀性的合金涂层,应用于冶金、石油、化工、能源、电力等工业中存在的,在腐蚀环境下承受摩擦磨损作用的机械运动副零部件表面改性与修复,有广阔的应用前景。

技术实现要素:

本发明的目的在于提供一种低摩擦系数高耐蚀性的固溶体合金涂层,解决在腐蚀环境下承受摩擦磨损作用的机械运动副零部件的摩擦相容性问题。同时,本发明还提供一种低摩擦系数高耐蚀性的固溶体合金涂层的制备方法。

本发明的技术方案是:

一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。铁基非晶合金粉末用气体雾化方法制备,为了保证粉末的固体流动性,保证后其激光熔敷层的成型质量,选择粒度范围在30-70μm粉末作为熔覆材料,制备的铁基非晶合金粉末为完全非晶态结构。

上述成分中,各个元素的主要作用是:

Cu可有限固溶到Fe中形成固溶体,提高熔覆层强度。Cu元素还可起到提高熔覆层抗大气腐蚀的性能;

Co可与γ-Fe形成无限互溶固溶体,同时还可提高熔覆层的热强性;

Cr可与α-Fe形成无限互溶固溶体,同时可提高Fe的电极电位,防止电化学腐蚀,是提高熔覆层耐蚀性的重要元素;

Ni可与γ-Fe形成无限互溶固溶体,同时可降低熔覆层脆性,降低熔覆层开裂倾向,减小摩擦系数;

Mo可有限固溶到Fe中,同时还能够细化熔覆层组织,提高熔覆层韧性和耐磨性,降低裂纹敏感性;

B、Si主要是提高粉末的脱氧造渣能力,提高熔覆层的成型质量。

发明人经过长期试验得出本发明采用以下配比,达到的效果最好。以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。

本发明所述的低摩擦系数高耐蚀性固溶体合金涂层的制备采用预涂覆技术,先在合金钢基体上涂覆厚度1-1.5mm的Fe基非晶粉末,利用5kW横流CO2激光器制得,具体工艺参数为:激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸为10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3-5L/min。最终制得的涂层主要由固溶体组成,厚度为0.8mm~1.2mm。本发明中,激光功率太小,且扫描速度太大,此时输入功率较低,不能形成冶金结合的熔覆层;如果激光功率太大,且扫描速度太小,输入功率较高,基材熔化较深,涂层的稀释率较高,就会破坏涂层的成分,影响涂层的显微组织。

由于涂层主要是由Fe基固溶体组成,固溶体中溶入了大量的合金元素,如Cr、Ni、Co、Mo等,这些元素的原子半径与Fe原子相当,主要形成置换固溶体。由于置换固溶体是一种弱强化的固溶强化方式,可提高涂层的强度与硬度,但提高量有限,得到适中的强度与硬度。固溶强化,可提高涂层强度,提高其弹性模量及弹性变形能力,使涂层具有大的弹性比功。在摩擦载荷作用下,可通过弹性变形调节其与摩擦副之间的载荷作用与分布,从而减少或避免对摩擦副的划伤,从而起到降低摩擦系数的作用。材料的耐蚀性主要取决于合金性质和组织结构。固溶体结构均匀单一,且自身的表面活性较高,易在表面迅速形成均匀钝化膜,使腐蚀难以发生。在具体的合金中,其耐蚀性主要取决于合金元素本身的特性。固溶体合金涂层中存在大量的Cr、Ni、Mo、Co等提高合金耐蚀性的元素,因而涂层具有高的耐蚀性。

本发明的固溶体合金涂层,与基体呈冶金结合,具有低的摩擦系数、适中的硬度和高的耐蚀性,应用于冶金、石油、化工、能源、电力等工业中普遍存在的,在腐蚀环境下承受摩擦磨损作用的机械运动副零部件表面改性与修复,有巨大的应用前景。

附图说明

图1为雾化Fe基非晶粉末的X射线衍射检测结果;

图2为不同工艺参数下制备涂层的X射线衍射检测结果;

图3为涂层的微观组织形貌;

图4为涂层的硬度变化曲线;

图5为涂层的摩擦系数变化曲线;

图6为涂层的电化学极化曲线;

图中:1为基体,2为结合区,3为熔覆层。

具体实施方式

下面结合附图和具体实施例对本发明作详细说明。

一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。

实施例1

一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0%;Co:8.4%;Cr:28.0%;Ni:17.0%;Mo:3.3%;Si:1.0%;B:3.1%;其余为Fe。

1)制备非晶合金粉末:

首先将上述所需成分用真空熔炼的方法获得母合金,然后将母合金放入雾化炉中,由气体雾化技术制备非晶合金粉末。雾化后筛选粒度范围在30-100μm粉末作为熔覆粉末。粉末的x射线衍射图如图1所示,由图可见,粉末为完全非晶态。

2)选用304L不锈钢作为基体。熔覆前将试样用600#砂纸磨平,在丙酮溶液中超声清洗10min清洗去油。

3)采用5kW横流CO2激光器对304L不锈钢基体进行激光熔覆。具体工艺参数为,预涂覆厚度1.5mm,激光功率3.6kW,扫描速度200mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3L/min。

4)激光熔覆后,将试样在空气中自然冷却。

实施例2

一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。

步骤(1)、(2)和(4)均与实施例1相同,仅调整步骤(3)中的工艺参数如下:预涂覆厚度1.2mm,激光功率3.6kW,扫描速度300mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为4L/min。

实施例3

一种低摩擦系数高耐蚀性固溶体合金涂层,以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:3.0%;Co:11%;Cr:32.0%;Ni:21.5%;Mo:4.5%;Si:1.6%;B:4.0%;其余为Fe。

步骤(1)、(2)和(4)均与实施例1、2相同,仅调整步骤(3)中的工艺参数如下:预涂覆厚度1.0mm,激光功率3.6kW,扫描速度400mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为5L/min。

组织结构与性能评价:

以下对实施例1,2和3中所制备的固溶体合金涂层分别通过显微组织观察、物相分析、硬度实验、摩擦磨损实验和电化学实验进行组织结构与性能评价。

(1)对实施例1,2和3中所制备的固溶体合金涂层进行物相分析,涂层的X射线衍射图如图2所示。由图分析可知,涂层主要由涂层主要由Fe(Ni)和(FeCrNi)固溶体组成。

(2)对实施例1,2和3中所制备的固溶体合金涂层进行微观组织分析,如图3所示,由图可知,熔覆层的显微组织形貌分为三个部分:从基体到涂层分别为基体、结合区和熔覆层。基体为奥氏体不锈钢,涂层由“丝条状”树枝晶组成,涂层与基体之间出现了约为5μm的平面晶,实现了涂层与基体的冶金结合。

(3)对实施例1,2和3中所制备的固溶体合金涂层进行硬度分析测试。采用HV-100A型显微硬度计,载荷200g,保载时间10s。沿熔覆层横截面的最大熔深方向,由熔覆层表面至基体每隔0.1mm的距离测一个数据,每个点测试三次,取平均值。不同工艺参数下试样的显微硬度曲线如图4所示。从中可以看出熔覆层硬度分布较为均匀,沿着熔覆层的深度变化不大,平均硬度约为480HV0.2。基体硬度在180HV0.2左右,涂层硬度约是基体硬度的2.5倍。

(4)对实施例1,2和3中所制备的固溶体合金涂层进行摩擦磨损分析测试。采用MMU-5屏摩擦磨损试验机,选用销-盘式滑动干摩擦的方式在室温下测定熔覆层摩擦系数,对磨件为轴承钢(GCr15),表面硬度为HRC63。施加载荷100N,摩擦时间60min,摩擦副转速100r/min。不同工艺参数下熔覆层摩擦系数随时间变化的曲线如图5所示。从图中可以看出,304L基体的磨损过程比较剧烈,摩擦系数变化幅度较大,摩擦系数平均值为0.55左右;在同样的载荷条件下,涂层的摩擦系数在0.08-1.2之间,有较低的摩擦系数。

(5)对实施例1,2和3中所制备的固溶体合金涂层进行电化学极化测试。采用M398电化学综合测试系统,三电极体系测定涂层在3.5%NaCl电解质溶液中的极化曲线。实验中工作电极为熔覆层,参比电极为饱和KCl溶液,辅助电极为金属铂片。不同工艺参数下熔覆层的极化曲线如图6所示。由极化曲线可以看出,熔覆层的电化学性能基本相近,均为典型的活性溶解,无明显的钝化区。不同扫工艺参数下涂层的腐蚀电位均明显高于304L基体,自腐蚀电流密度均远远小于基体,有优于304L不锈钢的耐蚀性。

技术特征:

1.一种低摩擦系数高耐蚀性固溶体合金涂层,其特征在于:以铁基非晶合金粉末为原料,采用激光熔覆技术制得,其中,以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。

2.根据权利要求1所述的低摩擦系数高耐蚀性固溶体合金涂层,其特征在于:以质量百分比计,所述铁基非晶合金粉末的成分为:Cu:2.5%;Co:10%;Cr:30%;Ni:20%;Mo:4.0%;Si:1.3%;B:3.5%;其余为Fe。

3.根据权利要求1所述的低摩擦系数高耐蚀性固溶体合金涂层,其特征在于:所述铁基非晶合金粉末用气体雾化方法制备,粉末粒度为30-70μm,为完全非晶态。

4.制备权利要求1所述的一种低摩擦系数高耐蚀性固溶体合金涂层的方法,其特征在于:制备工艺参数为:激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸为10mm×1mm;熔覆时,采用Ar气保护,Ar气流量为3-5L/min。

技术总结

本发明提供一种低摩擦系数高耐蚀固溶体合金涂层及其制备方法。将Fe基非晶合金粉末采用激光熔覆技术在合金钢基体表面制备合金涂层。其中Fe基非晶粉末的成分为Cu:2.0~3.0%;Co:8.4~11%;Cr:28.0~32.0%;Ni:17.0~21.5%;Mo:3.3~4.5%;Si:1.0~1.6%;B:3.1~4.0%;其余为Fe。制备时激光功率3.0~3.6kW,扫描速度200mm/min~400mm/min,光斑尺寸10mm×1mm。熔覆时,采用Ar气保护,Ar气流量为3?5L/min。本发明制备的涂层主要由固溶体组成,与基体之间为冶金结合,具有适中的硬度,低的摩擦系数,高的耐蚀性。

技术研发人员:王彦芳;石志强;钟鹏;孙旭

受保护的技术使用者:中国石油大学(华东)

文档号码:201610867338

技术研发日:2016.09.30

技术公布日:2017.01.04
声明:
“低摩擦系数高耐蚀固溶体合金涂层及其制备方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记