基于LS-SVM的概率集成学习锂离子电池剩余寿命预测方法,涉及一种电池剩余寿命预测方法。本发明为了解决传统的预测模型的预测精度有限的问题和稳定性不好的问题。本发明构建LS-SVM预测模型,构造输入向量并选择合适的输入向量维数及超参数范围,在一定范围内随机选择多组参数构成多个LS-SVM集成学习模型的子模型,并将子模型结果进行集成输出,极大程度上减小了精确确定参数的难度,并大幅度提高了预测准确性及稳定程度。本发明适用于电池剩余寿命预测。
声明:
“基于LS-SVM的概率集成学习锂离子电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)