本发明提供一种基于LSTM神经网络和迁移学习的
锂电池剩余寿命预测方法,包括以下步骤:步骤1:数据获取及数据预处理;步骤2:将数据按比例划分为训练集和测试集;步骤3:搭建源域LSTM神经网络模型,将源域数据训练集输入神经网络进行训练,将测试集的数据输入神经网络进行测试;步骤4:利用最大均值差异对源域和目标域的数据差异进行衡量,得到源域与目标域的分布距离;步骤5:根据最大均值差异对源域网络模型进行调整,得到目标领域网络网络模型,将源域网络模型参数进行迁移,将目标域数据输入模型进行剩余寿命预测。本发明能够通过迁移网络模型结构和参数,减少网络训练时间,提高效率。
声明:
“基于LSTM网络和迁移学习的锂电池寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)