本发明涉及一种基于融合型算法的锂离子电池剩余寿命预测方法,属于电池管理技术领域。该方法包括以下步骤:S1:获取电池容量衰减数据,并确定基于最优控制算法RUL预测的模型参数。S2:对训练集数据拟合,迭代输出最优控制算法模型参数滤波估计值和电池容量衰减数据滤波估计值,通过模型参数滤波估计值,得到初始RUL预测值。S3:基于最优控制算法的滤波估计值与实验数据差值,建立原始误差序列,并将其作为神经网络算法的输入,对误差序列不断迭代训练,输出误差序列的预测结果。S4:在训练集数据使用完毕后,综合最优控制算法的初始预测值和神经网络算法误差序列预测结果,得到最终的锂离子电池RUL预测结果。
声明:
“基于融合型算法的锂离子电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)