本发明涉及一种基于CRJ网络的锂离子电池健康状态预测方法,形成CRJ网络并训练;在线监测电池恒流充电时间序列,输入所述预测模型,输出可用放电容量序列,获得电池健康状态。本发明的方法使用恒流充电时间作为输入,由CRJ网络预测健康状态,实现了实时在线预测锂离子电池的健康状态;该方法对硬件条件要求不高,对内存占用小。本发明采用优化算法优化CRJ网络后建立的预测模型可用于同类型电池的健康状态预测;将IPSO算法和AOA算法结合,形成IAPSOA算法,IAPSOA优化算法加强了AOA算法的搜索能力和稳定性,可以更好地优化网络参数;获取CRJ网络模型精度高。
声明:
“基于CRJ网络的锂离子电池健康状态预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)