基于时间卷积神经网络的锂离子电池剩余寿命预测方法属于锂离子电池故障预测与健康管理领域。电池设备退化过程是一个高度非线性,复杂的多维系统,时变性强,现有算法预测过程需要专家知识和先验知识,费时费力,且预测过程困难,精度低。本方法通过神经网络强大的时序建模能力,挖掘时间序列中的隐藏模型,自动的建立所测参数与寿命之间的非线性映射关系。由于卷积计算的并行性机制,可以使用图形计算进行加速训练,计算更快。本发明提出了一种参数筛选器的计算方法,无效参数和冗余参数过多时,可以自动筛选一部分参数,减少了预测工作量,提高了训练效率。
声明:
“基于时间卷积神经网络的锂离子电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)