本发明公开了一种基于遗传卷积神经网络的
锂电池健康状态估计方法,具体为:针对不同类型锂电池在恒流条件下进行充放电,直到电池寿命终止结束记录,形成锂电池恒流充电电压曲线;在电池每一次充电后,确定该电池的当前容量,作为CNN模型的真实值;对记录的电压曲线使用特征点来表征一条电压曲线,并作为CNN模型的输入数据;初始化网络结构及各参数;将处理过的训练集数据进行分组,对每个CNN网络进行训练;将处理过的测试集数据输入到一组CNN网络结构中,选择真实值和预测值之间均方误差最小的网络结构作为最终的预测模型。
声明:
“基于遗传卷积神经网络的锂电池健康状态估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)