本发明公开了一种基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法,包括如下步骤:S1:进行锂电子电池充放电实验并采集样本数据,包含训练数据和测试数据;S2:确定神经网络的输入和输出变量,建立SOC的RBFNN模型;S3:基于训练数据集对建立的RBFNN进行参数学习,获取准确的RBFNN模型;S4:利用测试数据对建立的RBFNN进行独立精度检验;S5:将SOC设置为内部状态,设计RBFNN‑UKF,实现在初始SOC不确定的情况下对SOC的实时估计;S6:将传感器偏差设置为扩张状态,在原有RBFNN‑UKF基础上设计扩张RBFNN‑UKF,实现SOC与未知传感器偏差的协同估计。本发明能够实现SOC和传感器偏差的协同估计,具有收敛速度快、精度高、误差小的优点。
声明:
“基于神经网络与无迹卡尔曼滤波器的锂电子电池剩余电量与传感器偏差协同估计的方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)