本发明涉及一种模型‑数据混合驱动的锂离子电池剩余寿命预测方法,首先,初始化经验模型的四个独立模型参数;其次,基于差分阈值方法,利用锂离子电池容量数据识别拐点;再次,使用无迹粒子滤波方法获得初始估计结果;复次,建立初始误差序列,使用完全集成经验模态分解方法处理初始误差序列;又次,根据相关性方法使用本征模函数重构误差序列;从次,对重构误差序列使用高斯过程回归方法训练,得到带有置信区间的误差预测结果;最后,将初始估计结果使用带有置信区间的误差预测结果叠加,得到最终预测结果。本发明,利用少量历史数据,即可在短时内获得相应征兆并进行锂离子电池健康状态的诊断,进而实现后续锂离子电池剩余寿命预测。
声明:
“模型-数据混合驱动的锂离子电池剩余寿命预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)