本发明涉及一种基于机器学习的
锂电池健康状态及荷电状态联合估算方法,确定电池型号,根据充放电过程的明细数据,拟合V‑SOC曲线;建立锂电池等效电路模型;对一个充放电周期内的电压回弹特性曲线的曲线进行参数辨识,得到机器学习模型;开机时进行一次初始化测试操作;对该周期内的电压回弹曲线进行拟合,得到当前电池欧姆电阻和极化电阻,同时测量环境温度、在存储
芯片中读取电池充放电循环数据,计算其电池健康状态SOH;以辨识得到的欧姆电阻、极化电阻、极化电容和最大可用容量更新模型参数,运用UKF或EKF算法估算电池荷电状态SOC,在储存芯片中记录SOC值。本发明具有状态方程参数即时更新、对寿命影响因素考虑全面、参数多次使用、节省计算资源等特点。
声明:
“基于机器学习的锂电池健康状态及荷电状态联合估算方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)