本发明涉及一种基于可微连续映射的
锂电池健康监测模型自学习方法,属于锂电池健康监测领域,包括以下步骤:S1:根据锂电池健康状态监测的任务类型,以1d‑CNN和AST‑LSTM NN为核心模块进行组合,根据任务要求的性能指标以及网络本身的损失函数大小为约束,挑选适应任务需要的神经网络模型;S2:在获得与各类健康状态监测任务匹配的神经网络模型之后,采用可微结构的自动学习方法,对这些神经网络进行自动训练。本发明将助于缺乏ANN经验的锂电池研究人员和工程师,快速简单地使用ANN建模,降低模型训练的成本,提高锂电池健康状态监测的研发能效。
声明:
“基于可微连续映射的锂电池健康监测模型自学习方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)