本发明涉及一种基于深度强化学习卡尔曼滤波锂离子电池SOC的估计方法,其主要技术特点:本发明通过对锂离子电池二阶RC等效电路拓扑,建立了离散系统数学模型,提出了一种新的深度强化学习卡尔曼滤波锂离子电池SOC估计方法。首先,通过分析锂离子电池二阶RC等效电路模型,建立了电池的状态空间模型,并利用传统的卡尔曼滤波算法构建了锂离子电池的离散系统数学模型。结合人工智能思想,进一步设计了一个深度强化学习卡尔曼滤波锂离子电池SOC估计方法。最后,通过贝叶斯规则确保了最佳协方差。仿真结果表明,该估算方法在利用两种算法优点的基础上,通过贝叶斯规则可以确保系统的最佳协方差,有效降低了估算过程的计算量,进而提升SOC估算的精度,具有较好的实用性。
声明:
“基于深度强化学习的卡尔曼滤波锂离子电池SOC估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)