本发明涉及一种基于分解集成策略的锂离子电池剩余寿命预测方法,包括获取原始电池退化过程的传感信号并将其分解为多模态下的分量序列;将分量序列整理成训练集和测试集;利用分量序列的训练集对神经网络模型进行训练,获得训练好的分量序列的子网络模型;利用测试集对相应的子网络模型进行测试,获得各个子网络模型的预测值,基于子网络模型的预测值获得最终的电池容量预测结果;基于最终的电池容量预测结果获得电池剩余使用寿命。本发明能够解决锂离子电池寿命预测中存在的非线性、非平稳、多模态、多噪声特性导致单一尺度输入下单一数据驱动方法的预测精度低、泛化性能差等问题,为锂离子电池剩余寿命预测提供一种新的理论指导方法和实现途径。
声明:
“基于分解集成策略的锂离子电池剩余寿命预测方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)