本发明公开了一种基于局部容量增量特征的
锂电池健康状态估计方法,包括:获取锂电池的充电数据,评估20%至80%荷电状态对应的电压范围;将每一轮电压范围划分电压区间,并对电压区间进行电压修复;将电压修复的每个电压区间划分电压子区间,计算每个子区间对应的局部电压容量增量;将局部电压容量增量输入支持向量回归模型中训练,直至均方根误差损失函数收敛,得到优化后的电压区间;实时采集当前充放电循环次数下的锂电池充电片段,根据充电片段选择对应经优化的电压区间,得到多电压区间的联合估计值,并通过卡尔曼滤波算法得出当前锂电池健康状态估计的最优估计。本发明解决了无人搬运车数据驱动模型健康状态估计困难的问题。
声明:
“基于局部容量增量特征的锂电池健康状态估计方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)