合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 加工技术

> 基于LSTM-FFNN的电动叉车锂离子电池健康状态预测方法

基于LSTM-FFNN的电动叉车锂离子电池健康状态预测方法

1003   编辑:管理员   来源:中冶有色技术网  
2023-03-18 21:12:55
本发明主要解决现有技术中,预测方法计算量大,预测结果精度低;提供一种基于LSTM‑FFNN的电动叉车锂离子电池健康状态预测方法,减少了训练模型所需的数据,提高了锂电池健康状态预测的精度。包括以下步骤:建立基于LSTM的时间尺度参数预测模型,以预测放电过程中时间尺度参数开路电压V的变化;从时间尺度参数预测模型的开路电压V中提取循环尺度参数放电至最小电压的时间Tmin;建立基于FFNN的循环尺度参数预测模型,以预测锂电池容量C,从而得到锂电池健康状态预测值SOH。结合了LSTM对长时间序列的预测能力和FFNN的算法简单性,实现了从时间尺度参数到循环尺度参数的预测,减少了训练模型所需的数据,提高了锂电池健康状态预测的精度。
声明:
“基于LSTM-FFNN的电动叉车锂离子电池健康状态预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
加工技术
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记