本发明公开了一种用于大型无人机锂离子电池组SOC估计的无迹粒子滤波方法,包括以下步骤:S01、根据锂离子电池组SOC的影响因素与内部因参数耦合而具有的非线性工作特性之间的关系构建电池模型;S02、采集电池组的各项数据并进行整合;S03、整合后的数据利用无迹卡尔曼滤波算法得到的均值和方差来更新粒子滤波算法采样中的粒子集;S04、根据步骤S03的计算预测锂离子电池组工作特性。具有采用无迹卡尔曼滤波具有良好的滤波效果,它通过采取对系统状态变量的概率密度拟合,从而巧妙地避开了线性化过程带来的误差,估算精度进一步提升,系统鲁棒性更好的优点。
声明:
“用于大型无人机锂离子电池组SOC估计的无迹粒子滤波方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)