本发明提供一种基于BP神经网络的
储能锂电池组老化模式自动识别方法,涉及锂电池技术领域。方法包括:采集锂电池集合的运行数据,对运行数据进行预处理,获得满足后续计算需求的电压、电流、温度数据;对不同循环次数的锂离子电池组建立对应的IC曲线,并提取IC曲线的特征参数,比较锂离子电池组不同老化状态的特征参数变化,将特征参数变化的集合作为输入,老化模式类型作为输出,进行BP神经网络模型的训练;训练完成后,通过预处理后的运行数据提取IC曲线的特征量,基于训练好的BP神经网络模型实现老化模式的自动分类识别。该方法能够实现适用于工程数据的老化模式类型判断,便于对不同老化状态的
磷酸铁锂电池集进行健康管理。
声明:
“基于BP神经网络的储能锂电池组老化模式自动识别方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)