本发明公开了一种基于集成学习的
锂电池剩余使用寿命预测方法及系统,属于装备综合保障的剩余使用寿命预测技术与计算科学交叉领域,解决现有技术采用单一的机器学习算法很难精确预测锂电池的剩余使用寿命的问题。本发明对获取的锂电池的原始数据进行转换,转换后得到时间序列数据集,其中,原始数据是指某块锂电池随时间周期的充放电数据;基于时间序列数据集训练多个基本学习器;基于遗传算法集成训练后的多个基本学习器,得到集成模型;将待预测的锂电池的时间序列数据输入集成模型进行预测,得到锂电池的剩余使用寿命。本发明用于锂电池的剩余使用寿命预测,也可推广应用于其他单部件以及装备系统剩余使用寿命预测。
声明:
“基于集成学习的锂电池剩余使用寿命预测方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)