本发明公开了一种基于D3QN的主动配电网多目标无功控制方法,包括:以综合了主动配电网模型的电压偏差、网络损耗、无功补偿器动作成本和弃风弃光功率成本四部分的目标函数最小为优化控制目标;以配电网潮流约束、节点电压安全约束、支路电流安全约束为约束条件建立无功优化控制模型。然后设计了强化学习的状态空间、动作集合和奖励函数,构建了多目标无功控制的马尔科夫过程。最后基于D3QN深度强化学习网架迭代训练,得到经D3QN学习优化后的状态空间,寻找出主动配电网的最优调度状态。本发明的无功控制方法有效提升了电能质量,同时考虑了控制过程中的动作成本与新能源大规模接入配电网带来的弃风弃光功率成本,取得了很好的优化效果。
声明:
“基于D3QN的主动配电网多目标无功控制方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)