本发明提供了一种基于深度强化学习的动态电力系统经济调度方法,将动态经济调度转化为多阶段序贯决策模型,本发明将进行动作决策的调度中心作为决策主体,实际电力系统作为环境,通过对强化学习中动作、状态、奖励等元素的设计,将电力系统的经济调度模型转化为典型的多阶段序贯决策模型。该模型避免了对日益复杂的电力系统进行建模,且不要求精确的火电机组出力成本函数,通过智能体与环境的不断交互,更新策略,自适应负荷与新能源出力的不确定性,实现任意场景下的电力系统动态经济调度。
声明:
“基于深度强化学习的动态电力系统经济调度方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)