本发明公开了一种有源配电网净负荷概率预测方法,步骤包括:S1,对收集的配网负荷、新能源出力时间序列数据集进行缺失值填补、异常值剔除后,配网负荷减去新能源出力的得到净负荷时间序列;S2,将净负荷时间序列转换为监督学习数据集,使用时间卷积神经网络提取得到净负荷时间序列的特征向量;S3,使用时间卷积神经网络提取得到特征向量为输入训练分位数随机森林模型,得到净负荷的概率预测结果。本发明利用时间卷积神经网络‑分位数随机森林模型进行有源配电网概率预测时,使用时间卷积神经网络深入挖掘了净负荷的时序变化特征,实现了历史净负荷数据的充分利用,帮助分位数随机森林模型更快速准确地进行净负荷概率预测。
声明:
“有源配电网净负荷概率预测方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)