本发明公开了本发明涉及一种基于独立循环神经网络的新能源出力预测方法及系统,通过输入规划地区发展的某类新能源若干年内的出力曲线的历史数据,采用PFCM聚类算法对各年度出力曲线进行聚类,确定各年度的最优聚类场景数目N
S,采用场景削减算法获取各年的概率权重典型出力曲线,然后对独立循环神经网络进行训练,利用训练所得预测模型进行未来的年典型出力曲线预测;本发明用于在地区广泛进行新能源电力规划建设的发展新阶段中,能够着重考量新能源渗透率的变化,预测出更为精准的年度新能源出力典型曲线,在新能源规划建设中能够取得更为精确新能源出力预测结果,为地区电力规划建设与调度工作提供更为可靠的参考。
声明:
“基于独立循环神经网络的新能源出力预测方法及系统” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)