本发明公开了一种基于深度学习的蜂窝复合材料缺陷分类方法,包括:获取蜂窝复合材料作为训练试件;采用高能氙灯或卤素灯对训练试件进行热激励,采用红外热像仪采集训练试件表面在受到热激励后的热图序列;将热图序列分解为训练试件表面的各像素采集点的温度时间序列;以像素采集点的温度时间序列和相应的内部缺陷类型作为训练数据,对RNN模型进行训练,得到蜂窝复合材料缺陷检测模型;获取待检测蜂窝复合材料表面的各像素采集点的温度时间序列,并输入蜂窝复合材料缺陷检测模型,得到各像素采集点的内部缺陷类型。本发明能快速识别蜂窝复合材料内部缺陷的类型,而且快速准确。
声明:
“基于深度学习的蜂窝复合材料缺陷分类方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)