本发明属于钢铁冶金连铸检测技术领域,提供一种基于特征向量和层次聚类的结晶器漏钢预报方法。该预报方法分别提取黏结漏钢、正常工况历史数据以及在线实测数据的温度特征向量,建立特征向量样本集;对样本集进行归一化处理,并进行层次聚类;此后检查和判断在线提取的特征向量是否从属于漏钢类簇,进而识别和预报结晶器漏钢。本发明回避了报警阈值等参数繁琐的调试和修改环节,克服了以往漏钢预报方法的人为依赖性,具有良好的鲁棒性和迁移性;通过温度特征提取,不仅可准确识别黏结漏钢温度模式,避免漏报并显著降低了误报次数,还能够极大压缩数据计算量和运算时间,确保在线预报的实时性。
声明:
“基于特征向量和层次聚类的结晶器漏钢预报方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)