合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 电冶金技术

> 基于改进神经网络的漏钢可视化特征预报方法

基于改进神经网络的漏钢可视化特征预报方法

1061   编辑:管理员   来源:中冶有色技术网  
2023-03-18 14:50:09
本发明是一种基于改进神经网络的漏钢可视化特征预报方法,属于钢铁冶金连铸检测技术领域。具体为在线检测结晶器铜板热电偶温度信号,利用热成像技术可视化呈现结晶器铜板温度变化速率,在搜索和提取温度异常区域的面积、温度变化、位置、传播速率等特征的基础之上,建立BP神经网络漏钢预报模型,并借助遗传算法的自组织、自适应性,对模型的权值和阈值进行优化,实现结晶器漏钢可视化在线检测和预报,该方法不仅直观呈现结晶器温度分布、异常变化及发展趋势,而且可以实时、准确地预防结晶器漏钢事故,减少误报警次数,提高漏钢预报系统的准确率。
声明:
“基于改进神经网络的漏钢可视化特征预报方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
标签:
电冶金技术
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

2024退役新能源器件循环利用技术交流会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记