本发明涉及一种滚动轴承故障诊断方法,其利用卷积神经网络理论的学习算法完成故障诊断所需的特征提取任务,可以不依赖人工选择,由简单到复杂、由低级到高级自动地提取输入数据的本质特征,并能自动挖掘出隐藏在已知数据中的丰富信息;此外,采用了支持向量回归方法对测试样本进行分类识别,支持向量回归具有强大的泛化能力,对未知的新样本进行识别具有更好的精度,采用支持向量回归作为分类器对样本进行分类识别,可以克服深度学习默认的分类器泛化能力一般的缺点。本发明能够提高滚动轴承故障诊断的准确性和有效性,为解决滚动轴承故障诊断问题提供一种新的有效途径,可广泛应用于化工、冶金、电力、航空等领域的复杂机械系统故障诊断中。
声明:
“滚动轴承故障诊断方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)