本发明公开了一种冶金烧结过程的有监督预测方法,按照时间序列采集烧结过程中的相关过程变量,将过程变量与对应时刻的质量变量组合,构造训练样本;继续采样过程变量,将过程变量与对应前一采样时刻的质量变量组合,构造测试样本输入,并对训练样本以及测试样本进行数据预处理;构建有监督受限玻尔兹曼机,利用L个有监督受限玻尔兹曼机及一个全连接层共同组成有监督深度置信网络模型,利用极大化似然原理,通过CD‑K采样方法,预训练所提出的有监督受限玻尔兹曼机,利用反向传播微调多个有监督受限玻尔兹曼机堆叠组成的深度置信网络模型,获得模型参数;将测试样本输入到已经训练好的有监督深度置信网络模型中,获得对应的产品质量预测值。
声明:
“冶金烧结过程的有监督预测方法、装置及存储介质” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)