权利要求
1.挤塑机,其特征在于,包括挤塑机本体,所述挤塑机本体包括机身和加热装置,所述加热装置设置在所述机身的外侧,所述加热装置用于为所述机身加热,以使所述机身的温度大于或等于300℃; 所述机身内部开设有料腔,所述料腔内转动设置有螺杆,所述螺杆包括依次连接的加料段、压缩段和均化段,所述加料段,所述压缩段和均化段均具有螺纹,且所述压缩段的螺纹为双线螺纹,所述压缩段的长度占所述加料段、压缩段及均化段三者长度之和的55%~65%。
2.根据权利要求1所述的挤塑机,其特征在于,所述螺杆的长度和外径的比值为S,其中,28≤S≤30。
3.根据权利要求1所述的挤塑机,其特征在于,所述加热装置为加热瓦,所述加热瓦设置在所述料腔的外壁上,所述加热瓦的加热功率为14kW。
4.根据权利要求1-3任一所述的挤塑机,其特征在于,所述机身连接有进料斗和机颈,所述进料斗和所述机颈均与所述料腔连通,且所述进料斗位于所述加料段的上侧,所述机颈位于所述均化段的远离所述压缩段的一侧,所述机颈具有出料口,所述出料口设置有温度检测装置。
5.根据权利要求4所述的挤塑机,其特征在于,还包括机架,所述机架上设置有滑轨,所述挤塑机本体沿所述滑轨向靠近机头或远离机头的方向移动。
6.聚丙烯绝缘电缆的制造方法,其特征在于,采用包括权利要求1-5任一项所述的挤塑机的挤塑系统,所述挤塑系统还包括第一挤塑设备、第二挤塑设备和机头,该方法包括: 采用所述第一挤塑设备将制备内屏蔽层的材料加工成熔融状态的内屏蔽层材料; 采用所述第二挤塑设备将制备外屏蔽层的材料加工成熔融状态的外屏蔽层材料; 使用权利要求1-5任一项所述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,所述机头和所述挤塑机的所述机身为分离的状态; 提供绞合成型的金属导体线,并使得所述金属导体线在所述机头内处于输送状态; 在所述机身的出料口排出的熔融状态的绝缘材料稳定之后,将所述机身的机颈与所述机头连接,以使得所述出料口与所述机头的入口位置连通; 在所述出料口与所述机头的入口位置连通的状态下,将所述熔融状态的绝缘材料、所述熔融状态的内屏蔽层材料、以及所述熔融状态的外屏蔽层材料共同挤压到输送状态的所述金属导体线的外周上,且所述熔融状态的内屏蔽层材料包裹在所述金属导体线的外侧成为内屏蔽层,所述熔融状态的绝缘材料包裹在所述内屏蔽层的外侧成为绝缘层,所述熔融状态的外屏蔽层材料包裹在所述绝缘层的外侧成为外屏蔽层; 对包裹有所述绝缘层的所述金属导体线进行填充成缆; 将填充成缆后的所述电缆进行绕包扎进,形成内护套层; 将形成内护套层的电缆进行螺旋间隙铠装,形成铠装层; 采用第三挤塑设备对具备铠装层的电缆外周上挤出外护套层。
7.根据权利要求6所述的聚丙烯绝缘电缆的制造方法,其特征在于,使用权利要求1-5任一项所述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,机头和所述挤塑机的所述机身为分离的状态,包括: 将料腔加热到预设温度,并向所述料腔内加入绝缘材料,使得绝缘材料成为熔融状态的绝缘材料; 将挤塑机内的螺杆的转速提升到预设速度,以使所述螺杆推动所述熔融状态的绝缘材料向所述出料口移动。
8.根据权利要求6所述的聚丙烯绝缘电缆的制造方法,其特征在于,向所述料腔内加入绝缘材料之前,还包括: 将所述绝缘材料静置大于或等于24小时。
9.根据权利要求6-8任一所述的聚丙烯绝缘电缆的制造方法,其特征在于,所述绝缘材料为聚丙烯。
10.根据权利要求7所述的聚丙烯绝缘电缆的制造方法,其特征在于,预设温度为170℃~190℃;所述预设速度为19rpm~22rpm。
说明书
技术领域
本发明涉及电力电缆加工技术领域,尤其涉及挤塑机及聚丙烯绝缘电缆的制造方法。
背景技术
电力电缆是在电力系统的主干线路中用以传输和分配大功率电能的电缆产品,常用于城市地下电网、发电站的引出线路、工矿企业的内部供电及过江、过海的水下输电线,因而需要良好的绝缘性能,绝缘层是电缆上常用的绝缘保护热缩套管。
目前,在国内的电力系统中,中压电力电缆通常采用交联聚乙烯(polyethylene,简称PE)材料作为绝缘层,随着社会对环保要求的逐步提高,考虑到电缆绝缘层的回收再利用,需要发展以聚丙烯(polypropylene,简称PP)取代聚乙烯(polyethylene,简称PE)作为绝缘材料,但原有的生产绝缘层的挤塑机和生产方法,无法满足采用聚丙烯材料生产电缆的绝缘层的制备要求,容易出现塑化不良、出料口堵塞等问题。
因此,亟需发展一种挤塑机及聚丙烯绝缘电缆的制造方法,可以满足采用聚丙烯材料制备电缆绝缘层的制备要求。
发明内容
本发明提供一种挤塑机及聚丙烯绝缘电缆的制造方法,用以至少解决采用聚丙烯材料制备电缆绝缘层容易出现塑化不良、出料口堵塞的问题,满足电缆绝缘层的制备要求。
为了实现上述目的,本发明提供一种挤塑机,包括挤塑机本体,所述挤塑机本体包括机身和加热装置,所述加热装置设置在所述机身的外侧,所述加热装置用于为所述机身加热,以使所述机身的温度大于或等于300℃;
所述机身内部开设有料腔,所述料腔内转动设置有螺杆,所述螺杆包括依次连接的加料段、压缩段和均化段,所述加料段,所述压缩段和均化段均具有螺纹,且所述压缩段的螺纹为双线螺纹,所述压缩段的长度占所述加料段、压缩段及均化段三者长度之和的55%~65%。
本发明提供的一种挤塑机,通过所述加热装置为所述机身加热,以使所述机身的温度大于或等于300℃,在满足了高熔点物料熔化要求的同时,通过将所述压缩段的长度设置为占所述加料段、压缩段及均化段三者长度之和的55%~65%,确保了物料的塑化程度,从而提高了挤塑的质量,本发明提供的一种挤塑机,可以将聚丙烯作为物料,能够适用于制备以聚丙烯作为电缆绝缘层的制备要求,解决了聚丙烯材料在挤出过程中容易堵在下料口、以及塑化不良、老化等问题。
在一种可能实施的方式中,所述螺杆的长度和外径的比值为S,其中,28≤S≤30。
在一种可能实施的方式中,所述加热装置为加热瓦,所述加热瓦设置在所述料腔的外壁上,所述加热瓦的加热功率为14kW。
在一种可能实施的方式中,所述机身连接有进料斗和机颈,所述进料斗和所述机颈均与所述料腔连通,且所述进料斗位于所述加料段的上侧,所述机颈位于所述均化段的远离所述压缩段的一侧,所述机颈具有出料口,所述出料口设置有温度检测装置。
在一种可能实施的方式中,还包括机架,所述机架上设置有滑轨,所述挤塑机本体沿所述滑轨向靠近机头或远离机头的方向移动。
本发明还提供一种聚丙烯绝缘电缆的制造方法,采用包括上述挤塑机的挤塑系统,所述挤塑系统还包括第一挤塑设备、第二挤塑设备和机头,该方法包括:
采用所述第一挤塑设备将制备内屏蔽层的材料加工成熔融状态的内屏蔽层材料;
采用所述第二挤塑设备将制备外屏蔽层的材料加工成熔融状态的外屏蔽层材料;
使用上述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,所述机头和所述挤塑机的所述机身为分离的状态;
提供绞合成型的金属导体线,并使得所述金属导体线在所述机头内处于输送状态;
在所述机身的出料口排出的熔融状态的绝缘材料稳定之后,将所述机身的机颈与所述机头连接,以使得所述出料口与所述机头的入口位置连通;
在所述出料口与所述机头的入口位置连通的状态下,将所述熔融状态的绝缘材料、所述熔融状态的内屏蔽层材料、以及所述熔融状态的外屏蔽层材料共同挤压到输送状态的所述金属导体线的外周上,且所述熔融状态的内屏蔽层材料包裹在所述金属导体线的外侧成为内屏蔽层,所述熔融状态的绝缘材料包裹在所述内屏蔽层的外侧成为绝缘层,所述熔融状态的外屏蔽层材料包裹在所述绝缘层的外侧成为外屏蔽层;
对包裹有所述绝缘层的所述金属导体线进行填充成缆;
将填充成缆后的所述电缆进行绕包扎进,形成内护套层;
将形成内护套层的电缆进行螺旋间隙铠装,形成铠装层;
采用第三挤塑设备对具备铠装层的电缆外周上挤出外护套层。
本发明提供的一种聚丙烯绝缘电缆的制造方法中,所述内屏蔽层、所述绝缘层、以及所述外屏蔽层通过三层共挤加工,同心度较好,并且也能够使得所述绝缘层、和所述金属导体线连接紧密,有利于提高电缆的机械性能和使用寿命。此外,所述绝缘层采用的是聚丙烯材料,相对于采用聚乙烯材料,不仅可以省去除气和交联的过程,简化了生产工序,提高生产效率,还可以减小制备的绝缘层的厚度,同样满足电缆的使用要求,明显提升绝缘层的绝缘性能及老化前后的机械性能,更有效的应用于聚丙烯绝缘交、直流电缆的生产。
在一种可能实施的方式中,使用上述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,机头和所述挤塑机的所述机身为分离的状态,包括:
将料腔加热到预设温度,并向所述料腔内加入绝缘材料,使得绝缘材料成为熔融状态的绝缘材料;
将挤塑机内的螺杆的转速提升到预设速度,以使所述螺杆推动所述熔融状态的绝缘材料向所述出料口移动。
在一种可能实施的方式中,向所述料腔内加入绝缘材料之前,还包括:
将所述绝缘材料静置大于或等于24小时。
在一种可能实施的方式中,所述绝缘材料为聚丙烯。
在一种可能实施的方式中,预设温度为170℃~190℃;所述预设速度为19rpm~22rpm。
本发明提供的挤塑机及聚丙烯绝缘电缆的制造方法,通过温度检测装置用于检测通过出料口排出的物料的温度,解决温度测量偏差较大的问题,保证挤塑实际温度的控制。
本发明提供的挤塑机,所述加热装置为加热瓦,所述加热瓦设置在料腔的外壁上,所述加热瓦的加热功率为14kW,满足了物料熔化的热量需求,能够满足聚丙烯材料的比热容较大,需吸收大量的熔解热的使用需求。
本发明提供的挤塑机,所述压缩段采用双线螺纹,螺纹的间距较小,有利于比热容较大的聚丙烯材料吸收大量熔解热,聚丙烯材料充分的与所述螺杆接触接收所述螺杆的热量进行熔化。
本发明提供的聚丙烯绝缘电缆的制造方法,采用聚丙烯作为绝缘材料制备的电缆绝缘层的厚度可减薄,厚度减薄后的聚丙烯电缆的绝缘层,通过老化前后机械性能试验、局放试验与耐压试验等一系列相关试验,均满足相关试验要求。
除了上面所描述的本发明实施例解决的技术问题、构成技术方案的技术特征以及由这些技术方案的技术特征所带来的有益效果外,本发明实施例提供的一种挤塑机及聚丙烯绝缘电缆的制造方法所能解决的其他技术问题、技术方案中包含的其他技术特征以及这些技术特征带来的有益效果,将在具体实施方式中作进一步详细的说明。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的挤塑机和机头的结构示意图;
图2为本发明实施例提供的挤塑机的机身的立体结构示意图;
图3为本发明实施例提供的挤塑机的机身的又一立体结构示意图;
图4为本发明实施例提供的挤塑机的螺杆的立体结构示意图;
图5为本发明实施例提供的挤塑机的螺杆的主视图;
图6为本发明实施例提供的聚丙烯绝缘电缆的制造方法所采用的挤塑系统的结构示意图;
图7为本发明实施例提供的聚丙烯绝缘电缆的制造方法所采用的挤塑系统的局部结构示意图;
图8为本发明实施例提供的聚丙烯绝缘电缆的制造方法的流程图;
图9为本发明实施例提供的聚丙烯绝缘电缆的制造方法的局部流程图。
附图标记说明:
10-挤塑机本体;
11-机身;
111-料腔;
112-进料通道;
12-加热装置;
13-进料斗;
14-螺杆;
141-加料段;
142-压缩段;
143-均化段;
15-温度检测装置;
16-机颈;
17-驱动机构;
171-电机;
172-减速器;
173-联轴器;
18-行走机构;
19-防护罩;
20-机架;
30-滑轨;
40-机头;
50-第一挤塑设备;
60-第二挤塑设备。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
相关技术中,生产电缆的绝缘层采用的是聚乙烯材质,生产聚乙烯绝缘层的温度为150℃,相对于聚乙烯材料生产的电缆绝缘层,采用聚丙烯材料生产的电缆绝缘层,可以满足电缆在较高温度下运行的需求,有较高的击穿强度和体积电阻率,对提高电缆运行电压等级和线路载流量意义重大,并且聚丙烯材料使用更加环保。
由于聚丙烯材料的导热系数低,熔点高,所需的挤出温度高,在熔融温度下有较好的流动性,成形性能好,基于上述区别,在以聚乙烯材料制备电缆绝缘层的挤塑机,直接用于生产以聚丙烯材料作为电缆的绝缘层时,无法满足生产的要求,容易出现下料口堵塞、塑化不良、老胶等问题,影响生产的聚丙烯绝缘层的品质。
鉴于上述背景,本发明提供的挤塑机及聚丙烯绝缘电缆的制造方法,可以适用于以聚丙烯材料作为电缆的绝缘层进行的制备要求,解决了聚丙烯材料在挤出过程中容易堵在下料口、以及塑化不良、老化等问题。
下面参考附图描述本发明实施例提供的挤塑机及聚丙烯绝缘电缆的制造方法。
参考图1所示,本发明提供一种挤塑机,用于以聚丙烯材料作为生产的物料,包括挤塑机本体10,参考图2和图3所示,挤塑机本体10包括机身11和加热装置12,加热装置12设置在机身11的外侧,加热装置12用于为机身11加热,以使机身11的温度大于或等于300℃;
机身11内部开设有料腔111,料腔111内转动设置有螺杆14,参考图4和图5所示,螺杆14包括依次连接的加料段141、压缩段142和均化段143,加料段141、压缩段142和均化段143均具有螺纹,且压缩段142的螺纹为双线螺纹,压缩段142的长度占加料段141、压缩段142及均化段143三者长度之和的55%~65%。
本发明提供的一种挤塑机,通过加热装置12为机身11加热,以使机身11的温度大于或等于300℃,在满足了高熔点物料熔化要求的同时,通过将压缩段142的长度设置为占加料段141、压缩段142及均化段143三者长度之和的55%~65%,确保了物料的塑化程度,从而提高了挤塑的质量,本发明提供的一种挤塑机,可以将聚丙烯作为物料,能够适用于制备以聚丙烯作为电缆绝缘层的制备要求,解决了聚丙烯材料在挤出过程中容易堵在下料口、以及塑化不良、老化等问题。
聚丙烯绝缘性能优良,相对于采用胶联聚乙烯制备的电缆绝缘层厚度,采用聚丙烯作为绝缘材料制备的电缆绝缘层的厚度可减薄,经过多批次、多频次试验验证,厚度减薄后的聚丙烯电缆的绝缘层,通过老化前后机械性能试验、局放试验与耐压试验等一系列相关试验,均满足相关试验要求。
由于聚丙烯材料所需的挤出温度高,本发明通过加热装置12为机身11加热,以使机身11的温度大于或等于300℃,满足了聚丙烯材料所需的熔化温度,使得本发明提供的一种挤塑机可以适用于以聚丙烯作为物料进行生产,可以解决下料口堵塞、塑化不良的问题,确保了良好的生产品质。
参考图3和图4所示,料腔111内转动设置的螺杆14,用于推动进入到料腔111内的物料,使得进入到料腔111内的物料运动到靠近均化段143的位置。
螺杆14包括依次连接的加料段141、压缩段142和均化段143,加料段141、压缩段142和均化段143均具有螺纹,加料段141、压缩段142和均化段143的螺纹的旋向相同。其中,加料段141用于对物料进行压实和输送,通过料腔111的内壁和螺杆14表面的摩擦作用实现物料的输送和压实效果;压缩段142的作用是使物料进一步的压实和塑化,物料在压缩段142形成高压,同时受到来自料腔111外部的加热和螺杆14的强烈搅拌、混合和剪切等作用开始熔融,物料的液相不断增加,固相不断减少;均化段143的作用是进一步使得物料塑化和均匀化,并使之定压、定量和定温地挤出。
由于聚丙烯材料的比热容较大,需吸收大量熔解热,因而压缩段142采用双线螺纹,螺纹的间距较小,有利于物料充分的与螺杆14接触接收螺杆14的热量进行熔化。
参考图5所示,加料段141的长度为L2,压缩段142的长度为L1,均化段143的长度为L3。压缩段142的长度占加料段141、压缩段142及均化段143三者长度之和的55%~65%,即(L1+L2+L3)55%≤L1≤(L1+L2+L3)65%。
在一种可能实施的方式中,压缩段142的长度占加料段141、压缩段142及均化段143三者长度之和的55%、58%、60%、62%或65%。这样的结构,使得聚丙烯材料通过螺杆14的时长延长8%~12%。
容易理解的是,如果压缩段142的长度过长容易出现物料老化的问题,影响生产的绝缘层的品质,如果压缩段142的长度过短,容易出现塑化不良的问题,同样会影响到生产的绝缘层的品质,本实施例中,将压缩段142的长度设置为占加料段141、压缩段142及均化段143三者长度之和的55%~65%,既可以避免出现物料老化的问题,又可以避免塑化不良的问题,确保了生产的绝缘层的品质稳定。
在一种可能实施的方式中,螺杆14的长度和外径的比值为S,其中,28≤S≤30。
容易理解的是,螺杆14的外径越大,物料在料腔111内输送的过程中通过与螺杆14的接触,吸收的热量越多,有利于物料的熔化,螺杆14的长度越长,吸收的热量越多,物料在料腔111内输送的过程中与螺杆14接触的时间越长,但是,物料在料腔111内输送的过程中吸收的热量过多反而会影响到加工的绝缘层的品质。本实施例通过限定螺杆14的长度和外径的比值S,能够满足聚丙烯材料的比热容较大,需吸收大量的熔解热的使用需求,同时也避免了聚丙烯材料发生老胶的问题,确保了生产的绝缘层的品质。
在一种可能实施的方式中,螺杆14的长度和外径的比值S可以为28、29或30。此处对于螺杆14的长度和螺杆14的外径的尺寸不做具体限制,以满足螺杆14的长度和外径的比值为S即可。
在一种可能实施的方式中,加热装置12为加热瓦,加热瓦设置在料腔111的外壁上,加热瓦的加热功率为14kW,满足了物料熔化的热量需求,相较于8KW的加热功率,加热效率提升了75%,能够满足聚丙烯材料的比热容较大,需吸收大量的熔解热的使用需求。
在一种可能实施的方式中,机身11呈圆筒状,加热瓦的个数可以为多个,多个加热瓦围绕料腔111的外壁均匀相接排列,确保料腔111内的物料受热均匀,并使料腔111可以最大限度的接收加热瓦传输的热量,此处不对加热瓦的个数作具体的限定,例如加热瓦的个数可以为6个、7个或8个等。
在其他可能实施的方式中,加热装置12也可以为其他具有发热功能的装置,例如加热器。
在一种可能实施的方式中,参考图1和图2所示,机身11连接有进料斗13和机颈16,进料斗13和机颈16均与料腔111连通,且进料斗13位于加料段141的上侧,机颈16位于均化段143的远离压缩段142的一侧,机颈16具有出料口,出料口设置有温度检测装置15,机颈16用于与生产电缆绝缘层的机头40拆卸连接。
机身11具有进料通道112,进料斗13是连接在进料通道112上,通过进料通道112与料腔111连通,进料斗13用于向料腔111内添加物料,添加到进料斗13内的物料由进料通道112进入到料腔111内,参考图2和图3所示,再在螺杆14的作用下,先是通过加料段141运输到压缩段142,紧接着运输到均化段143成为熔融的状态,再通过机颈16的出料口排出,温度检测装置15用于检测通过出料口排出的物料的温度。
在一种可能实施的方的式中,温度检测装置15为融温探头和/或手持插入式探针温度计。可以是通过融温探头和手持插入式探针温度计相结合的方式提高温度测量的准确性,解决温度测量偏差较大的问题,保证挤塑实际温度的控制。
在一种可能实施的方的式中,参考图1所示,本发明提供一种挤塑机还包括机架20,机架20上设置有滑轨30,挤塑机本体10沿滑轨30向靠近机头40或远离机头40的方向移动。
机架20固定在地面上,通过滑轨30实现了挤塑机本体10的运动,在机颈16的出料口排出的物料稳定之后,挤塑机本体10沿滑轨30向靠近机头40运动,便可将机颈16可以与机头40连接,从而使得料腔111与机头40连通,实现电缆绝缘层的生产。此处对于滑轨30的机构不做具体限制,以使挤塑机本体10可以实现沿滑轨30向靠近机头40或远离机头40的方向移动即可。
参考图1和图4所示,挤塑机还包括驱动机构17,驱动机构17包括电机171、减速器172和联轴器173,电机171的输出轴通过联轴器173与减速器172的输入轴连接,减速器172的输出轴与螺杆14的靠近加料段141的一端连接,驱动机构17用于驱动螺杆14沿自身的周向转动。
为了增加挤塑机的使用安全性,挤塑机还包括防护罩19,防护罩19罩在挤塑机本体10的外侧,并且防护罩19与加热装置之间具有安全距离。
挤塑机还包括行走机构18,行走机构18用于使得螺杆14沿自身的轴向移动,便于螺杆14的安装和拆卸,例如,行走机构18可以是移动架,支撑着螺杆14移动。
本发明还提供一种聚丙烯绝缘电缆的制造方法,采用包括上述挤塑机的挤塑系统,该挤塑系统还包括第一挤塑设备50、第二挤塑设备60和机头40,参考图6和图8所示,该方法包括:
S10、采用第一挤塑设备将制备内屏蔽层的材料加工成熔融状态的内屏蔽层材料;
S20、采用第二挤塑设备将制备外屏蔽层的材料加工成熔融状态的外屏蔽层材料;
S30、使用上述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,机头和挤塑机的机身为分离的状态;
S40、提供绞合成型的金属导体线,并使得金属导体线在机头内处于输送状态;
S50、在机身的出料口排出的熔融状态的绝缘材料稳定之后,将机身的机颈与机头连接,以使得出料口与机头的入口位置连通;
S60、在出料口与机头的入口位置连通的状态下,将熔融状态的绝缘材料、熔融状态的内屏蔽层材料、以及熔融状态的外屏蔽层材料共同挤压到输送状态的金属导体线的外周上,且熔融状态的内屏蔽层材料包裹在金属导体线的外侧成为内屏蔽层,熔融状态的绝缘材料包裹在内屏蔽层的外侧成为绝缘层,熔融状态的外屏蔽层材料包裹在绝缘层的外侧成为外屏蔽层;
S70、对包裹有绝缘层的金属导体线进行填充成缆;
S80、将填充成缆后的电缆进行绕包扎进,形成内护套层;
S90、将形成内护套层的电缆进行螺旋间隙铠装,形成铠装层;
S100、采用第三挤塑设备对具备铠装层的电缆外周上挤出外护套层。
本发明提供的一种聚丙烯绝缘电缆的制造方法中,内屏蔽层、绝缘层、以及外屏蔽层通过三层共挤加工,同心度较好,并且也能够使得绝缘层、和金属导体线连接紧密,有利于提高电缆的机械性能和使用寿命。此外,本发明提供的一种聚丙烯绝缘电缆的制造方法中,制备绝缘层的材料采用的是聚丙烯材料,相对于采用聚乙烯材料,不仅可以省去除气和交联的过程,简化了生产工序,提高生产效率,还可以减小制备的绝缘层的厚度,同样满足电缆的使用要求,明显提升绝缘层的绝缘性能及老化前后的机械性能,更有效的应用于聚丙烯绝缘交、直流电缆的生产。
容易理解的是,参考图6和图7所示,第一挤塑设备50是用来将内屏蔽层的材料加工成熔融状态的设备,制备内屏蔽层的材料也就是内屏蔽层材料,第二挤塑设备60是用来将外屏蔽层的材料加工成熔融状态设备,制备外屏蔽层的材料也就是外屏蔽层材料,上述的挤塑机是用来将制备绝缘层的材料加工成熔融状态的绝缘材料,制备绝缘层的材料也就是绝缘材料,可以采用聚丙烯材料。
在一种可能实施的方式中,参考图6和图8所示,步骤S40、提供绞合成型的金属导体线,并使得金属导体线在机头内处于输送状态。其中,提供绞合成型的金属导体线,可以是通过拉丝设备,将金属导体拉成复合而工艺要求的单丝,通过绞线设备绞制并通过紧压模具成型,生产绞合成型的金属导体线,其中,可以是多个单丝通过绞线设备绞制,绞合成型的金属导体线的截面可以呈圆形。
在一种可能实施的方式中,金属导体线可以是铜线或者铝线。
在一种可能实施的方式中,可以通过牵引设备牵动金属导体线,使得金属导体线在机头40内处于输送状态。
考虑到出料口排出熔融状态的绝缘材料的初期,排出的熔融状态的绝缘材料的光滑性、塑化程度不够稳定,会影响到生产的电缆绝缘层的品质,例如出现出料不均匀、生产的电缆绝缘层表面凹凸不平整等问题,因而在机身11的出料口排出的熔融状态的绝缘材料稳定之后,再将机身的机颈16与机头40连接,以使得出料口与机头的入口位置连通,从而使得通过机头40挤压成型的电缆的绝缘层的品质得到保证。
在一种可能实施的方式中,机身11的出料口排出的熔融状态的绝缘材料稳定,指的是出料口排出的熔融状态的绝缘材料的光滑性和塑化程度稳定,可以根据经验进行评判,观察出料口排出的熔融状态的绝缘材料的光滑性、塑化程度。
在一种可能实施的方式中,步骤S60中,在出料口与机头的入口位置连通的状态下,将熔融状态的绝缘材料、熔融状态的内屏蔽层材料、以及熔融状态的外屏蔽层材料共同挤压到输送状态的金属导体线的外周上,可以是通过第一挤塑设备50将熔融状态的内屏蔽层材料输送到机头40内,第二挤塑设备60将熔融状态的外屏蔽层材料输送到机头40内,同时,上述的挤塑机将熔融状态的绝缘材料输送到机头40内,实现内屏蔽层、绝缘层、以及外屏蔽层三层共挤加工。
步骤S70中,对包裹有绝缘层的金属导体线进行填充成缆;可以是采用高阻燃性填充材料进行填充空隙,例如采用高阻燃性填充绳进行填充空隙。
步骤S80中,将填充成缆后的电缆进行绕包扎进,形成内护套层,其中,可以是采用包带绕包扎紧,使得电缆更加紧实。
步骤S90中、将形成内护套层的电缆进行螺旋间隙铠装,形成铠装层,其中,可以是采用双层镀锌钢带对电缆进行螺旋间隙铠装,由于钢带具有一定的刚度,为了避免电缆的内部结构被铠装层损伤,设置了内护套层,内护套层的材质可以是采用半导电尼龙带。
S100、采用第三挤塑设备对具备铠装层的电缆外周上挤出外护套层。容易理解的是,第三挤塑设备适用于生产外护套层的挤塑设备。
在一种可能实施的方式中,外护套层可以是采用低烟卤聚烯烃材料或聚氯乙烯(Polyvinyl chloride,简称PVC),外护套层用于防止铠装层受到侵蚀。
在一种可能实施的方式中,参考图8和图9所示,S30、使用上述的挤塑机将制备绝缘层的材料加工成熔融状态的绝缘材料,其中,机头和挤塑机的机身为分离的状态,包括:
S31、将料腔加热到预设温度,并向料腔内加入绝缘材料,使得绝缘材料成为熔融状态的绝缘材料;
S32、将挤塑机内的螺杆的转速提升到预设速度,以使螺杆推动熔融状态的绝缘材料向出料口移动。
步骤S31,将料腔加热到预设温度,并向料腔内加入绝缘材料,使得绝缘材料成为熔融状态的绝缘材料,可以是通过加热装置12的热使得料腔111的外壁被加热,从而将热量传导到料腔111内,通过进料斗13向料腔111内加入绝缘材料,加入的绝缘材料遇热熔化,成为熔融状态的绝缘材料,可以流动。
在一种可能实施的方式中,预设温度为170℃~190℃,此时的温度设置相对于生产交联聚乙烯绝缘层的温度提升了近80%,考虑到预设温度与实际温度存在一定偏差,通过温度检测装置15实时检测出料口的温度,保证实际温度的控制。
在一种可能实施的方式中,预设温度可以为170℃、175℃、180℃、185℃或190℃。上述的挤塑机初始温度设置200℃左右,通过观察,物料太软呈黏糊状且老胶问题严重,随后将温度设置降为190℃左右,物料得到改善,继续调节上述的挤塑机温度至180℃左右,排料表面光滑、塑化良好。经过验证,绝缘挤塑预设温度为170℃~190℃,能够满足挤塑工艺要求,提高生产品质。
步骤S32、将挤塑机内的螺杆的转速提升到预设速度,可以是逐步提高螺杆转速至预设速度。
在一种可能实施的方式中,预设速度为19rpm~22rpm,表示螺杆14每分钟的旋转次数,其中,(Revolutions Per Minute,缩写rpm,)即转每分钟。
在一种可能实施的方式中,预设速度可以为19rpm、20rpm、21rpm或22rpm。
在一种可能实施的方式中,向料腔内加入绝缘材料之前,还包括:将绝缘材料静置大于或等于24小时。该步骤的目的是净化绝缘材料,有利于提高生产的绝缘层的品质。
在一种可能实施的方式中,绝缘材料为聚丙烯。
在一种可能实施的方式中,在机身11的出料口排出的熔融状态的绝缘材料稳定之后,以及将机身11的机颈16与机头40连接,以使得出料口与机头的入口位置连通之前,还包括,加装过滤板,继续排料15min~20min,从而进一步提高排料的稳定性。
在一种可能实施的方式中,可以是在出料口加装过滤板,滤除混入的杂质。
在一种可能实施的方式中,机头40采用油控模温机进行加热,加热温度可达300℃。
在一种可能实施的方式中,上述的挤塑机的温度控制在200℃,第一挤塑设备50的温度控制在180℃,机头40的温度控制在200℃,能够有效解决异味较重、塑化不良、老胶、麻点等频发问题。
本发明提供的一种聚丙烯绝缘电缆的制造方法中,采用三层共挤加工,保证了加工出的产品具有高同心度,偏心控制在了4%以内,改善了电缆绝缘层的偏芯的缺陷,提高绝缘层表面的光滑性。
这里需要说明的是,本申请涉及的数值和数值范围为近似值,受制造工艺的影响,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
在本发明的描述中,需要理解的是,所使用的术语“中心”、“长度”、“宽度”、“厚度”、“顶端”、“底端”、“上”、“下”、“左”、“右”、“前”、“后”、“竖直”、“水平”、“内”、“外”“轴向”、“周向”等指示方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的位置或原件必须具有特定的方位、以特定的构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等应做广义理解,例如可以是固定连接,也可以是可拆卸连接,或成为一体;可以是机械连接,也可以是电连接或者可以互相通讯;可以是直接相连,也可以通过中间媒介间接相连,可以使两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。
全文PDF