合肥金星智控科技股份有限公司
宣传

位置:中冶有色 >

有色技术频道 >

> 合金材料技术

> 纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能

纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能

472   编辑:中冶有色技术网   来源:赖祥晔,翁楠,池昱晨,秦凤香  
2024-04-16 16:04:07
纳米多孔金属材料具有纳米尺度的三维双连续固体-空隙结构,其比表面积大、孔隙率高和孔结构多样的特点使其具有独特的物理、化学和机械性能,在催化[1,2]、传感[3~5]、污水处理[6,7]以及超级电容器[8]等领域得到了广泛的应用

制备纳米多孔金属材料的方法,如金属有机沉积法和模板法等的操作难度大,且耗时较长[9,10] 与这些方法相比,化学与电化学脱合金法的操作简单且可控性强等,可用于选择性溶解活性组分制备纳米多孔金属 目前,用电化学脱合金法能选择性溶解Au-Ag单相合金中的金属Ag制备纳米多孔Au[11~14],还能制备纳米多孔Pt[15~17]、Ag[18,19]和Pd[20]等贵金属纳米多孔材料 但是,贵金属的价格高昂,而Cu[21]和Ni[22,23]等非贵金属体系纳米多孔材料的价格低廉、易于回收且环境友好 其中用Cu-Al[24]、Cu-Zn[25]、Ti-Cu[26]等非贵金属体系脱合金处理制备的纳米多孔Cu备受关注 Xu等[27]报道,纳米多孔Cu对有机小分子的氧化具有优异的催化活性和稳定性 这意味着,过渡族金属纳米多孔材料在燃料电池和电化学等领域有极大的应用潜力 Fe是价格便宜、储备丰富的过渡金属元素,可用于制备具有催化性能的纳米多孔材料[28~31] Fe元素优异的电导性,可使电子从催化剂表面快速转移到支撑电极 同时,由Al、Fe等金属电极、电解质和空气电极组成的金属-空气电池具有能量密度高、成本低和结构紧凑等特点,引起了极大的关注[32] 而对于该电池体系中的电极材料,三维多孔结构的催化剂负荷高、催化剂和电解质之间的接触面积大[33],能显著提高其催化反应活性和反应动力学 因此,低成本、高自然丰度且环境友好的纳米多孔Fe可有效增强电化学氧化还原反应,作为金属-空气电池体系中的电极材料具有巨大的应用潜力 鉴于此,本文使用在773~833 K热处理的Fe76Si9B5P10非晶合金为前驱体,用脱合金法在H2SO4溶液中自然脱合金制备纳米多孔Fe-Si-B-P结构,在碱性电解质中研究纳米多孔Fe-Si-B-P的电化学性能并探讨其脱合金机制和高电化学活性的原因

1 实验方法1.1 纳米多孔Fe-Si-B-P条带的制备

将实验用纯度高于99.9%的Fe、Si、B和Fe-P中间合金在高纯氩气氛中进行电弧熔炼,制备出设计成分为Fe76Si9B5P10的合金锭,然后采用单辊急冷甩带法制备出厚度约为20 μm、宽度约5 mm的非晶合金条带,将多份Fe76Si9B5P10非晶合金条带分别在不同温度热处理600 s 最后将这些在不同温度热处理的Fe76Si9B5P10合金条带分组,将其分别在不同浓度的H2SO4溶液中沉浸不同时间(600~3600 s)完成脱合金处理,得到纳米多孔Fe-Si-B-P条带

1.2 性能表征

用Cu Kα激发的X射线衍射(XRD,Rigaku)和透射电子显微镜(TEM,JEOL 2100F)表征样品的相结构 在氩气流下用差示扫描量热仪(DSC,TA)分析非晶合金样品的热稳定性,升温速率为0.33 K/s

用扫描电子显微镜(SEM,QUANTA FEG 250)观察脱合金样品的表面形貌和微观结构(加速电压为20 kV),并用能量色散X射线能谱仪(EDS)分析脱合金样品表面的元素 使用Nanomeasure软件测量分析纳米多孔的孔径

在标准三电极系统下用PARSTAT-4000电化学工作站进行CV测试 在6 mol/L KOH溶液中,工作电极为在773 K热处理并在0.05 mol/L H2SO4溶液中脱合金3600 s的纳米多孔FeSiBP条带,Pt为对电极,饱和甘汞电极为参比电极 同时,对未处理的Fe76Si9B10P5非晶条带进行对比研究 CV测试中电位区间设置为-1.6~0 V,扫描速率分别为10、30、50、70、90和110 mV/s

2 结果和讨论2.1 Fe76Si9B5P10 非晶合金的热稳定性

图1给出了Fe76Si9B5P10非晶合金的DSC曲线 可以看出,Fe76Si9B5P10非晶合金的玻璃化温度Tg为790 K,结晶温度Tx为803 K

图1



图1Fe76Si9B10P5非晶合金的DSC曲线

Fig.1DSC curve of Fe76Si9B10P5 amorphous alloy

2.2 Fe76Si9B5P10 非晶合金的微观结构

为了得到纳米晶结构,将Fe76Si9B5P10非晶合金条带分别在773、793、813和833 K进行了热处理 图2和图3分别给出了热处理前后Fe76Si9B5P10合金条带的XRD谱、TEM照片及相应的选区衍射谱(SADs) 如图2和图3a、b所示,在Fe76Si9B5P10合金条带的XRD谱和选区衍射谱中只有一个弥散峰或弥散环,表明是典型无特征结构的非晶态 而在773~833 K热处理后的XRD谱中的45.3°和65.9°处出现了明显的衍射峰,分别对应α-Fe相的(110)和(200)晶面,表明非晶合金发生了晶化,主要析出了α-Fe相 同时,在XRD谱中还有多个来源于Fe2B相和Fe3P相的衍射峰 图3b给出了在773 K热处理的Fe76Si9B5P10前驱体条带的TEM照片和SAD图 可以看出,平均尺寸约为155 nm的晶粒均匀分布,图中的衍射环可标定为α-Fe相的(101)、(105)和(021)晶面,及Fe2B相的(110)、(002)和(211)晶面 根据XRD谱和TEM照片,Fe76Si9B5P10前驱体合金在热处理后发生了晶化

图2



图2Fe76Si9B10P5非晶合金及其在不同温度热处理后的XRD谱

Fig.2XRD patterns of Fe76Si9B10P5 amorphous alloy and its crystallized counterparts after annealing at different temperatures

图3



图3Fe76Si9B10P5非晶合金及其在773 K热处理后的明场图像和相应的选区衍射图

Fig.3Bright field images and corresponding selective area diffraction patterns of Fe76Si9B10P5 amorphous alloy (a) and its crystallized counterpart after annealing at 773 K (b)

2.3 脱合金后的纳米多孔结构

图4给出了在不同温度热处理的Fe76Si9B10P5合金在0.05 mol/L H2SO4溶液中脱合金后的XRD谱 可以看出,在45.3°和65.9°处出现两个来自α-Fe晶体相的衍射峰,表明脱合金处理后仍残留部分α-Fe相 与热处理后未脱合金的样品相比,Fe2B相和Fe3P相的相对衍射强度更强,表明α-Fe晶粒在 H2SO4溶液中发生部分优先溶解 其原因是,α-Fe相和Fe2B相及Fe3P相之间的活泼性不同

图4



图4在不同温度热处理的Fe76Si9B10P5合金在0.05 mol/L H2SO4溶液中脱合金处理后的XRD谱

Fig.4XRD patterns of Fe76Si9B10P5 alloy annealed at different temperatures after dealloying in 0.05 mol/L H2SO4 solution

为了揭示脱合金机制,图5给出了在0.05 mol/L H2SO4溶液中测试的α-Fe相、Fe-B相(Fe85B15)、Fe3P相和773 K热处理Fe76Si9B10P5合金的开路电位(OCPs)与浸泡时间的关系曲线 所有样品均在0.05 mol/L H2SO4溶液中发生活性溶解,但是其初始的开路电位不同 α-Fe相的稳定开路电位为-0.57 V,远低于浸泡1200 s后的Fe-B相(-0.44 V)、Fe3P相(-0.46 V)、热处理Fe76Si9B10P5合金(-0.50 V)和Fe76Si9B10P5非晶合金(-0.43 V),表明α-Fe相在0.05 mol/L H2SO4溶液中具有最高的溶解活性 而存在于晶体合金中的Fe2B相表现出比Fe85B15更高的开路电位,因为Fe2B相中的B/Fe比率高于Fe85B15中的比率 即在0.05 mol/L H2SO4溶液中,α-Fe相和Fe2B相及Fe3P相之间存在明显的电位差 各相之间活泼性的差异产生的微电偶使α-Fe晶粒优先溶解,最终形成了纳米多孔结构

图5



图5纯Fe、Fe85B15合金、Fe3P合金、Fe76Si9B10P5非晶合金和热处理Fe76Si9B10P5合金在0.05 mol/L H2SO4溶液中的开路电位与浸泡时间的关系

Fig.5OCPs with immersion time of the high-purity Fe plate, Fe85B15 alloy, Fe3P alloy, as-spun Fe76Si9B10P5 amorphous alloy and annealed Fe76Si9B10P5 alloy in 0.05 mol/L H2SO4 solution

图6给出了分别在773、793、813、833 K热处理的Fe76Si9B5P10条带在0.05 mol/L H2SO4溶液中脱合金处理3600 s后的表面微观形貌 从图6可见,Fe76Si9B5P10合金表面形成了均匀的纳米多孔结构 从图7可见,随着热处理温度的提高多孔孔径的平均尺寸也从在773 K处理后的150 nm增大到在883 K处理后的260 nm 图6a给出了在773 K热处理后的Fe76Si9B5P10非晶合金的横截面SEM照片 可以看出,在样品的内部已经形成了纳米多孔结构,即样品经3600 s脱合金处理后已经完全多孔化

图6



图6Fe76Si9B10P5合金在773、793、813和833 K温度热处理后在0.05 mol/L H2SO4溶液中脱合金处理样品的SEM照片,内嵌图片为横截面SEM照片

Fig.6SEM morphologies of dealloyed Fe76Si9B10P5 alloy annealed at 773 K (a), 793 K (b), 813 K (c) and 833 K (d) in 0.05 mol/L H2SO4. Inset is an image of cross section after dealloying

图7



图7Fe76Si9B10P5合金在不同温度热处理后在0.05 mol/L H2SO4溶液中脱合金处理样品的平均孔径

Fig.7Aperture size of Fe76Si9B10P5 alloys annealed at different temperatures after dealloying in 0.05 mol/L H2SO4

图8给出了样品在不同浓度的H2SO4溶液中完成脱合金处理后的表面形貌 在脱合金过程的初始阶段部分α-Fe晶粒优先溶解于0.005、0.01和0.05 mol/L H2SO4溶液中,然后附近的α-Fe晶粒发生阳极溶解使孔隙的数量不断增加并逐渐相连,形成纳米多孔结构 同时,在0.05 mol/L H2SO4溶液中处理3600 s的条带表面的孔隙均匀,而在其他浓度的H2SO4溶液中的样品却没有形成均匀的孔隙 这表明,溶液的浓度越高则α-Fe晶粒的溶解速度越快,使孔隙的数量随着时间的延长而增加

图8



图8在773 K热处理的Fe76Si9B10P5合金分别在0.005、0.01和0.05 mol/L的H2SO4溶液中脱合金处理600、1800、3600 s后所得样品的SEM照片

Fig.8SEM morphologies of Fe76Si9B10P5 alloys annealed at 773 K after dealloying in 0.005 mol/L (a), 0.01 mol/L (b), 0.05 mol/L (c) H2SO4 solutions for 600 s (a1~a3), 1800 s (b1~b3), 3600 s (c1~c3)

2.4 纳米多孔结构的电化学性能

图9给出了脱合金后的纳米多孔(NP FeSiBP)和Fe76Si9B10P5非晶合金(AM FeSiBP)在6 mol/L KOH溶液中扫描速率为50 mV/s时不同循环周期的CV曲线 从图9a可见,AM FeSiBP的第一个循环周期内分别在约-1.14 V(峰I)和-0.6 V(峰II)处出现氧化峰,其峰值电流密度分别为0.0020和0.0085 A/cm2,分别对应Fe→Fe(OH)2和Fe(OH)2→FeOOH的氧化过程[33] 随着循环次数的增加,在约-0.74 V处还出现了一个氧化峰,可能是非金属元素氧化导致的电流上升 回扫描时分别在-1.20 V(峰III)和-1.33 V(峰IV)处出现还原峰,其峰值电流密度分别为-0.0037和-0.0051 A/cm2 随着循环次数的增加氧化峰和还原峰的峰值电流密度逐渐增大,但是峰电位的变化较小 经过10次电化学循环后,氧化峰Ⅱ和还原峰Ⅳ的峰值电流密度分别增大到0.020和-0.025 A/cm2

图9



图9Fe76Si9B10P5非晶合金和脱合金Fe76Si9B10P5合金在6 mol/L KOH溶液中的CV曲线

Fig.9CV curves of Fe76Si9B10P5 amorphous alloy (a) and dealloyed Fe76Si9B10P5 alloy (b) in 6 mol/L KOH solution

从图9b可见,NP FeSiBP在第一个电循环周期内位于-0.60 V的Fe2+到Fe3+的氧化峰II的峰值电流密度约为0.15 A/cm2,是AM FeSiBP样品的17.6倍,表明其更加优异的活性 位于-1.38 V的还原峰III的峰值电流密度约为-0.1 A/cm2,在-1.14 V处还出现一个峰值电流密度约为0.039 A/cm2的小氧化峰I 经过10次电化学循环后氧化峰和还原峰的峰值电流密度分别降至0.12和-0.10 A/cm2, 但是仍分别为未脱合金非晶样品AM FeSiBP的6倍和4倍,即脱合金后样品比非晶合金样品具有更大的电化学活性 即与AM FeSiBP相比,NP FeSiBP具有更大的比表面积和孔隙率,为电化学反应提供了更多的活性位点,因此其氧化还原性能明显优于AM FeSiBP

图10a给出了NP-Fe-Si-B-P在不同扫描速率下的CV曲线,所有的曲线都对应第6个电循环周期 随着扫描速率的提高氧化峰电位朝正电位方向移动,而还原峰则朝负电位方向移动,表明该电化学反应是一种准可逆的氧化还原反应 随着扫描速率的提高氧化峰Ⅱ和还原峰Ⅲ的峰值电流密度持续增大 图10b给出了NP FeSiBP在不同扫描速率下峰值电流密度的变化 可以看出,在电化学循环的前几个周期内氧化峰的峰值电流密度持续增大,然后随着循环次数的增加而逐渐减小

图10



图10脱合金处理Fe76Si9B10P5合金在6 mol/L的 KOH溶液中的CV曲线和在不同扫描速率下氧化峰/还原峰的峰值电流密度的变化

Fig.10CV curves of dealloyed Fe76Si9B10P5 alloy in 6 mol/L KOH solution (a) and the change of the peak current densities of oxidation and reduction (b) at different scanning rates

以上数据表明,AM FeSiBP的峰值电流密度在第一次循环时相对较小,但是随着循环次数的增加而增大,这可能是活性部位数量增加产生的氧化物造成的[34] 与AM FeSiBP不同,NP FeSiBP的峰值电流密度先减小再增大,并在最后几个循环中持续减小 与所有碱性溶液中Fe的循环极化相同,NP FeSiBP的氧化反应可分为两个步骤:在较低电位E=-1.07 V时Fe→Fe(OH)2,在较高电位E=-0.60 V时Fe(OH)2→FeOOH[35] 这些反应物将部分孔隙覆盖,如图11所示,在样品表面的一些片状产物使纳米多孔结构部分被覆盖或坍塌,从而使比表面积和反应活性位点的数量减小[36],即随着循环周期的增加其活性有所降低

图11



图11脱合金处理的Fe76Si9B10P5合金在CV测试后的SEM照片

Fig.11SEM morphology of dealloyed Fe76Si9B10P5 alloy after the measurement of cyclic voltammogram

如上所述,Fe76Si9B10P5非晶合金在高于773 K的温度热处理后结晶形成α-Fe相、Fe2B相和Fe3P相 图12给出了热处理后FeSiBP非晶合金脱合金机理的示意图 在H2SO4溶液中α-Fe相部分优先溶解形成纳米多孔结构,不同相之间电位差导致形成微电偶,α-Fe晶粒作为阳极发生优先溶解,而相对稳定的Fe2B相和Fe3P相则作为阴极残留下来[37] 这表明,α-Fe晶粒一旦暴露在H2SO4溶液中就迅速发生选择性溶解,而具有较高稳定性的残余相Fe2B相和Fe3P相则缓慢溶解 同时,在773 K热处理且具有纳米多孔结构的Fe76Si9B10P5合金表现出比Fe76Si9B10P5非晶合金更高的催化活性,因为多孔结构具有更大的比表面积[38],可以提供大量有利于氧化还原反应的吸附点、催化点和大量的反应界面

图12



图12热处理Fe-Si-B-P合金脱合金的机制示意图

Fig.12Diagram of the mechanism of dealloying of annealed Fe-Si-B-P alloys

3 结论

Fe76Si9B10P5非晶合金在773~833 K热处理时发生晶化生成了α-Fe相、Fe2B相和Fe3P相,在酸性溶液脱合金处理过程中α-Fe晶粒优先溶解导致纳米多孔结构的形成 随着热处理温度的提高,纳米多孔的孔径增大 与原始Fe76Si9B10P5非晶合金相比,热处理Fe76Si9B10P5合金在脱合金处理后具有更大的活性表面积、更高的孔隙率和更丰富的多孔结构,能提供更多的催化位点而使其具有更高的电化学催化活性

参考文献

View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子

[1]

Liu N, Zhai Z H, Yu B, et al.

Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction

[J]. Int. J. Hydrog. Energy, 2022, 47(73): 31330

DOIURL [本文引用: 1]

[2]

Tang W G, Zhu S L, Jiang H, et al.

Self-supporting nanoporous CoMoP electrocatalyst for hydrogen evolution reaction in alkaline solution

[J]. J. Colloid Interface Sci., 2022, 625: 606

DOIURL [本文引用: 1]

[3]

Yong Y L, Zhang W J, Hou Q H, et al.

Highly sensitive and selective gas sensors based on nanoporous CN monolayer for reusable detection of NO, H2S and NH3: A first-principles study

[J]. Appl. Surf. Sci., 2022, 606: 154806

DOIURL [本文引用: 1]

[4]

Zheng X H, Qiao X F, Luo F Y, et al.

Low-cost high-performance NO2 sensor based on nanoporous indium tin oxide (ITO) film

[J]. Sens. Actuators., 2021, 346B: 130440

[5]

Yao L J, Li Y X, Ran Y, et al.

Construction of novel Pd-SnO2 composite nanoporous structure as a high-response sensor for methane gas

[J]. J. Alloys Compd., 2020, 826: 154063

DOIURL [本文引用: 1]

[6]

Mohajer F, Ziarani G M, Badiei A, et al.

Functionalized silica nanoporous Pd complex for reduction of nitroarenes and dyes

[J]. Inorg. Chem. Commun., 2022, 144: 109936

DOIURL [本文引用: 1]

[7]

Lahiri S K, Zhang C, Sillanp?? M, et al.

Nanoporous NiO@SiO2 photo-catalyst prepared by ion-exchange method for fast elimination of reactive dyes from wastewater

[J]. Mater. Today Chem., 2022, 23: 100677

[本文引用: 1]

[8]

Ye Z D, Miao R, Miao F J, et al.

3D nanoporous core-shell ZnO@Co3O4 electrode materials for high-performance supercapacitors and nonenzymatic glucose sensors

[J]. J. Electroanal. Chem., 2021, 903: 115766

DOIURL [本文引用: 1]

[9]

Shen W N, Dunn B, Moore C D, et al.

Synthesis of nanoporous bismuth films by liquid-phase deposition

[J]. J. Mater. Chem., 2000, 10A(3) : 657

[本文引用: 1]

[10]

Luo H M, Sun L, Lu Y F, et al.

Electrodeposition of mesoporous semimetal and magnetic metal films from lyotropic liquid crystalline phases

[J]. Langmuir, 2004, 20(23): 10218

PMID [本文引用: 1] " />

A cementation-like process taking place under potential control and introduced in this work as a "potential-controlled displacement" (PCD) is developed as a new method for processing of nanoporous Ag structures with controlled roughness (porosity) length scales. Most of the development work is done in a deoxygenated electrolyte containing 1 x 10(-3) M AgClO(4 )+ 5 x 10(-2) M CuSO(4) + 1 x 10(-1) M HClO(4) using a copper rotating disk electrode at 50 rpm. At this electrolyte concentration, the Ag deposition is under diffusion limitations whereas the Cu dissolution displays a typical Butler-Volmer anodic behavior. Thus, a careful choice of the operational current density enables strict control of the ratio between the dissolving and depositing metals as ascertained independently by atomic absorption spectrometry (AAS). The roughness length scale of the resulting surfaces is controlled by a careful selection of the current density applied. The highest surface area and finest morphology is obtained when the atomic ratio of Ag deposition and Cu dissolution becomes 1:1. Preseeding of uniform Ag clusters on the Cu surface made by pulse plating of Ag along with complementary plating and stripping of Pb monolayer is found to yield finer length scale resulting in up to a 67% higher surface area. An electrochemical technique using as a reference value the charge of an underpotentially deposited Pb layer on a flat Ag surface is used for measuring the real surface area. Scanning electron microscopy (SEM) studies are conducted to examine and characterize the deposit morphology of Ag grown by PCD on Cu substrates.

[19]

Yeh F H, Tai C C, Huang J F, et al.

Sun. Formation of porous silver by electrochemical alloying/dealloying in a water-insensitive zinc chloride-1-ethyl-3-methyl imidazolium chloride ionic liquid

[J]. J. Phys. Chem., 2006, 110B(11) : 5215

[本文引用: 1]

[20]

Yi Q F, Huang W, Liu X P, et al.

Electroactivity of titanium-supported nanoporous Pd-Pt catalysts towards formic acid oxidation

[J]. J. Electroanal. Chem., 2008, 619-620: 197

DOIURL [本文引用: 1]

[21]

Lu H B, Li Y, Wang F H.

Synthesis of porous copper from nanocrystalline two-phase Cu-Zr film by dealloying

[J]. Scr. Mater., 2007, 56(2): 165

DOIURL [本文引用: 1]

[22]

Chang J K, Hsu S H, Sun I W, et al.

Formation of nanoporous nickel by selective anodic etching of the nobler copper component from electrodeposited nickel-copper alloys

[J]. J. Phys. Chem., 2008, 112C(5) : 1371

[本文引用: 1]

[23]

Fukumizu T, Kotani F, Yoshida A, et al.

Electrochemical formation of porous nickel in zinc chloride-alkali chloride melts

[J]. J. Electrochem. Soc., 2006, 153(9): C629

DOIURL [本文引用: 1]

[24]

Qi Z, Zhao C C, Wang X G, et al.

Formation and characterization of monolithic nanoporous copper by chemical dealloying of Al-Cu alloys

[J]. J. Phys. Chem., 2009, 113C(16) : 6694

[本文引用: 1]

[25]

Jia F L, Yu C F, Deng K J, et al.

Nanoporous metal (Cu, Ag, Au) films with high surface area: general fabrication and preliminary electrochemical performance

[J]. J. Phys. Chem., 2007, 111C(24) : 8424

[本文引用: 1]

[26]

Dan Z H, Qin F X, Sugawara Y, et al.

Fabrication of nanoporous copper by dealloying amorphous binary Ti-Cu alloys in hydrofluoric acid solutions

[J]. Intermetallics, 2012, 29: 14

DOIURL [本文引用: 1]

[27]

Xu C X, Liu Y Q, Wang J P, et al.

Fabrication of nanoporous Cu-Pt(Pd) core/shell structure by galvanic replacement and its application in electrocatalysis

[J]. ACS Appl. Mater. Interfaces, 2011, 3(12): 4626

DOIURL [本文引用: 1]

[28]

Ou S L, Ma D G, Li Y H, et al.

Fabrication and electrocatalytic properties of ferromagnetic nanoporous PtFe by dealloying an amorphous Fe60Pt10B30 alloy

[J]. J. Alloys Compd., 2017, 706: 215

DOIURL [本文引用: 1]

[29]

Chen F, Zhou Y, Chen Y N, et al.

Fabrication of nano-porous Co by dealloying for supercapacitor and azo-dye degradation

[J]. Chin. J. Mater. Res., 2020, 34(12): 905

陈 峰, 周 洋, 陈彦南 等.

脱合金制备纳米多孔Co及其超级电容器和对偶氮染料的降解性能

[J]. 材料研究学报, 2020, 34(12): 905

[30]

Ma D G, Wang Y M, Li Y H, et al.

Structure and properties of nanoporous FePt fabricated by dealloying a melt-spun Fe60Pt20B20 alloy and subsequent annealing

[J]. J. Mater. Sci. Technol., 2020, 36: 128

DOIURL

[31]

Chi Y C, Chen F, Wang H N, et al.

Highly efficient degradation of acid orange II on a defect-enriched Fe-based nanoporous electrode by the pulsed square-wave method

[J]. J. Mater. Sci. Technol., 2021, 92: 40

DOI [本文引用: 1] " />

Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air.

[34]

Hu Y C, Wang Y Z, Su R, et al.

A highly efficient and self-stabilizing metallic-glass catalyst for electrochemical hydrogen generation

[J]. Adv. Mater., 2016, 28: 10293

DOIURL [本文引用: 1]

[35]

?erny J, Micka K.

Voltammetric study of an iron electrode in alkaline electrolytes

[J]. J. Power Sources, 1989, 25(2): 111

DOIURL [本文引用: 1]

[36]

Fu C Q, Xu L J, Dan Z H, et al.

Annealing effect of amorphous Fe-Si-B-P-Cu precursors on microstructural evolution and Redox behavior of nanoporous counterparts

[J]. J. Alloys Compd., 2017, 726: 810

DOIURL [本文引用: 1]

[37]

Dan Z H, Qin F X, Zhang Y, et al.

Mechanism of active dissolution of nanocrystalline Fe-Si-B-P-Cu soft magnetic alloys

[J]. Mater. Charact., 2016, 121: 9

DOIURL [本文引用: 1]

[38]

Liu P S.

Calculation method for the specific surface area of porous metals

[J]. Chin. J. Mater. Res., 2009, 23(4): 415

[本文引用: 1]

刘培生.

多孔金属比表面积的计算方法

[J]. 材料研究学报, 2009, 23(4): 415

[本文引用: 1] class="outline_tb" " />

Mesoporous semimetal bismuth film and magnetic metal nickel and cobalt thin films have been electrodeposited from hexagonal or lamellar structured lyotropic liquid crystalline phases with polyoxyethylene surfactant. The liquid crystalline templates are characterized by low-angle X-ray diffraction (XRD) and polarized-light optical microscopy (POM). The metal films are characterized by low-angle and wide-angle XRD, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The magnetic measurements on the mesoporous nickel and cobalt films are shown to have higher coercivity (Hc) than the nonporous polycrystalline films.

[11]

Snyder J, Livi K, Erlebacher J.

Dealloying silver/gold alloys in neutral silver nitrate solution: porosity evolution, surface composition, and surface oxides

[J]. J. Electrochem. Soc., 2008, 155(8): C464

[12]

Dong H, Cao X D.

Nanoporous gold thin film: fabrication, structure evolution, and electrocatalytic activity

[J]. J. Phys. Chem., 2009, 113C(2) : 603

[13]

Wierzbicka E, Sulka G D.

Nanoporous spongelike Au-Ag films for electrochemical epinephrine sensing

[J]. J. Electroanal. Chem., 2016, 762: 43

[14]

Hu L W, Liu X, Le G M, et al.

Morphology evolution and SERS activity of the nanoporous Au prepared by dealloying sputtered Au-Ag film

[J]. Physica, 2019, 558B: 49

[15]

Liu H T, He P, Li Z Y, et al.

High surface area nanoporous platinum: facile fabrication and electrocatalytic activity

[J]. Nanotechnology, 2006, 17(9): 2167

[16]

Thorp J C, Sieradzki K, Tang L, et al.

Crozier, A. Misra, M. Nastasi, D. Mitlin, S. T. Picraux. Formation of nanoporous noble metal thin films by electrochemical dealloying of Pt x Si1- x

[J]. Appl. Phys. Lett., 2006, 88(3): 033110

[17]

Zhang X L, Li G J, Duan D, et al.

Formation and control of nanoporous Pt ribbons by two-step dealloying for methanol electro-oxidation

[J]. Corros. Sci., 2018, 135: 57

[18]

Viyannalage L T, Liu Y, Dimitrov N.

Processing of nanoporous Ag layers by potential-controlled displacement (PCD) of Cu

[J]. Langmuir, 2008, 24(15): 8332

PMID " />

The degradation of acid orange II (AO II) by a nanoporous Fe-Si-B (NP-FeSiB) electrode under the pulsed square-wave potential has been investigated in this research. Defect-enriched NP-FeSiB electrode was fabricated through dealloying of annealed Fe76Si9B15 amorphous ribbons. The results of UV-vis spectra and FTIR indicated that AO II solution was degraded efficiently into unharmful molecules H2O and CO2 on NP-FeSiB electrode within 5 mins under the square-wave potential of ±1.5 V. The degradation efficiency of the NP-FeSiB electrode remains 98.9% even after 5-time recycling. The large amount of active surface area of the nanoporous FeSiB electrode with lattice disorders and stacking faults, and alternate electrochemical redox reactions were mainly responsible for the excellent degradation performance of the NP-FeSiB electrode. The electrochemical pulsed square-wave process accelerated the redox of Fe element in Fe-based nanoporous electrode and promoted the generation of hydroxyl radicals (?OH) with strong oxidizability as predominant oxidants for the degradation of azo dye molecules, which was not only beneficial to improving the catalytic degradation activity, but also beneficial to enhancing the reusability of the nanoporous electrode. This work provides a highly possibility to efficiently degrade azo dyes and broadens the application fields of nanoporous metals.

[32]

Yu F, Zhou H Q, Zhu Z, et al.

Three-dimensional nanoporous iron nitride film as an efficient electrocatalyst for water oxidation

[J]. ACS Catal., 2017, 7: 2052

[33]

Li Y G, Dai H J.

Recent advances in zinc-air batteries

[J]. Chem. Soc. Rev., 2014, 43(15): 5257

PMID [本文引用: 2] " />

提出了一种根据泡沫金属的孔率和孔径这两个基本参量计算其比表面积的方法. 利用泡沫金属比表面积与孔率和孔径的对应数理关系, 结合有关实验数据,成功地计算出了电沉积法和高压渗流铸造法制备的泡沫金属的比表面积.

Bifunctional nanoporous ruthenium-nickel alloy nanowire electrocatalysts towards oxygen/hydrogen evolution reaction

1

2022

声明:
“纳米多孔Fe-Si-B-P的脱合金制备及其电化学性能” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)
分享 0
         
举报 0
收藏 0
反对 0
点赞 0
全国热门有色金属技术推荐
展开更多 +

 

中冶有色技术平台微信公众号
了解更多信息请您扫码关注官方微信
中冶有色技术平台微信公众号中冶有色技术平台

最新更新技术

报名参会
更多+

报告下载

第二届中国微细粒矿物选矿技术大会
推广

热门技术
更多+

衡水宏运压滤机有限公司
宣传
环磨科技控股(集团)有限公司
宣传

发布

在线客服

公众号

电话

顶部
咨询电话:
010-88793500-807
专利人/作者信息登记