锂离子电池(LIBs)具有能量密度高、无记忆效应和工作温度范围宽等优点,已广泛应用在便携式电子设备和
新能源汽车等领域[1]
目前应用的石墨类
负极材料其理论比容量较低(372 mAh·g-1),不能满足新一代锂离子电池的需求[2~4]
过渡金属氧化物(Mx O y,M=Fe、Ni、Mn、Cu等)有较高的理论比容量(600~1200 mAh·g-1)、低成本和环境友好等优点[5,6]
与过渡金属氧化物相比,过渡金属氢氧化物的制备成本更低,在储锂反应过程中生成的LiOH在低电位下还可与Li进一步可逆生成Li2O和LiH,提供更高的理论比容量,极有应用前景[7~9]
例如,Ni(OH)2的理论储锂比容量高达1735 mAh·g-1,约为NiO理论比容量(718 mAh·g-1)的2倍[10]
但是,过渡金属氢氧化物在充放电过程中的动力学缓慢和显著的体积效应使其倍率性能和循环性能降低[11]
将电极材料纳米化可缩短Li+在材料中的扩散路径、提高材料的比表面积和缓解材料的体积效应,进而改善电极材料的动力学性能和循环稳定性[12]
在各种纳米结构材料中,3D微/纳分级结构(由低维纳米结构单元构成的微米级二次结构)材料具有
纳米材料优势的同时还具有协同效应(即有效避免低维纳米材料的自团聚、提高振实密度)[13,14]
Lim等[9]制备的花状微/纳分级结构Ni(OH)2Cl,用作
锂离子电池负极材料,在0.2 A·g-1电流密度下经过150次循环其比容量为1236 mAh·g-1;Inamdar等[15]以Cu箔为基体用表面化学氧化法制备的由Cu(OH)2纳米棒构成的3D微/纳分级网状结构材料,在0.1 A·g-1电流密度下可逆比容量高达1472 mAh·g-1,在0.2 A·g-1电流密度下循环100次后比容量保持为506 mAh·g-1
但是,以往制备微/纳分级结构电极材料使用的水热法、溶剂热法、模版法和溶胶凝胶法条件苛刻、过程冗长且成本高
本文以十二烷基硫酸钠(SDS)为辅助剂,用简便的均相沉淀法制备具有开放结构的3D微/纳分级结构的α-Ni(OH)2负极材料,研究SDS用量对其结构和储锂性能的影响
1 实验方法1.1 材料的制备
用均相沉淀法制备α-Ni(OH)2材料:先将1.745 g的Ni(NO3)2·6H2O(分析纯)溶解在90 mL蒸馏水中,然后分别按n(SDS)/n(Ni2+)为0∶10、1∶10、2∶10和3∶10的比例加入SDS,最后再加入尿素18.862 g,原料充分溶解后在90℃搅拌反应4.5 h
反应结束后,将生成的沉淀在60℃母液中陈化20 h,然后进行抽滤、洗涤和冷冻干燥
将n(SDS)/n(Ni2+)等于0∶10、1∶10、2∶10和3∶10的产物样品分别标记为NS-0、NS-10、NS-20和NS-30
1.2 材料的表征
使用X'Pert3 Powder型多功能X射线衍射仪分析样品的物相结构(测试条件:Cu靶,加速电压为40 kV,加速电流为30 mA,扫描的速度为5 (°)·min-1);用SU5000型场发射扫描电子显微镜观察样品的微观形貌;使用NEXUS 470型傅里叶变换红外光谱仪采集样品的红外光谱;用SDTQ 600型热重分析仪(TGA)表征样品的组分含量(测试条件:空气气氛,温度范围为25~900℃,升温速度为10℃/min);用ESCALAB250Xi型X射线光电子能谱仪(XPS)分析样品中的元素组成和价态
将制备出的样品与导电剂(Super P)和粘结剂(PVDF)按照6∶3∶1的质量比在N-甲基吡咯烷酮(NMP)溶剂中混合成均匀的浆料,然后将浆料均匀涂覆在铜箔上并在80℃真空条件下干燥12 h
将烘干的极片冲裁成直径为16 mm的圆形工作电极(极片上活性物质负载量约为0.4 mg/cm2),分别以金属锂片和聚丙烯多孔膜(Celgard2500型)为对电极和隔膜,使用1 mol·L-1 LiPF6/EC+DMC+DEC (体积比1∶1∶1)为电解液,在氩气气氛下组装成CR2016型纽扣半电池
用BTS-5 V/10 mA型多通道电池充放电测试仪对电池进行恒电流充放电测试,电位范围为0.01~3.0 V (vs. Li+/Li);使用CHI760E型
电化学工作站对电池进行循环伏安(CV)和交流阻抗(EIS)测试,CV测试的电位窗口为0.01~3.0 V (vs. Li+/Li),EIS测试的频率范围为105~10-2 Hz
2 结果和讨论2.1 微观结构
图1a给出了不同SDS用量样品的XRD谱
可以看出,四个样品的衍射峰均与α-Ni(OH)2 (JCPDS No. 22-0444)相符,没有出现杂质相的峰,表明制备出的样品都是α-Ni(OH)2
相对而言,无SDS辅助的NS-0样品其(001)衍射峰最强,说明其结晶性较好;而SDS辅助的3个样品其(001)衍射峰明显宽化且强度变低,表明样品的结晶性降低[16]
利用Scherrer公式计算出样品的晶格常数和平均晶粒尺寸,结果列于表1
可以看出,随着SDS用量的增多样品的层间距由NS-0的0.7243 nm增大到NS-30的0.7338 nm,平均晶粒尺寸由5.6 nm降低到3.0 nm
这表明,SDS的加入影响了α-Ni(OH)2结晶和生长过程,在α-Ni(OH)2内引入了更多的结构缺陷、细化了晶粒并拓宽了层间距
电极材料中的结构缺陷可为锂离子存储提供更多的活性位点,并改善材料的电子/离子传输性能,因此有利于提升材料的储锂活性和反应动力学[17]
图1
图1SDS用量不同的Ni(OH)2样品的XRD谱和TGA图、NS-0和NS-20样品的FT-IR对比、NS-0和NS-20的Ni 2p XPS谱以及NS-20的S 2p XPS谱
Fig.1XRD patterns (a) and TGA plots (b) of the series of Ni(OH)2 samples prepared with different amounts of SDS; FT-IR spectra of the NS-0 and NS-20 samples (c); high resolution Ni 2p XPS spectra of NS-0 and NS-20 samples (d,e) and high resolution S 2p XPS spectrum of NS-20 sample (f)
Table 1
表1
表1不同SDS添加量样品的晶格参数和平均晶粒尺寸
Table 1Lattice parameters and average grain size of samples with different SDS additions
Samples
|
Crystal plane
|
2θ / (o)
|
Interlayer distance
/ nm
|
Average grain size
/ nm
|
NS-0
|
(001)
|
12.21
|
0.7243
|
5.6
|
NS-10
|
(001)
|
12.10
|
0.7324
|
3.2
|
NS-20
|
(001)
|
12.06
|
0.7335
|
3.0
|
NS-30
|
(001)
|
12.05
|
0.7338
|
3.0
|
图1b给出了不同SDS用量的α-Ni(OH)2的TGA图
可以看出,NS-0样品有3个失重区间,25~300℃区间的失重(~3.7%)对应吸附水和层间水的去除,300~340℃区间的失重(~23.0%)对应Ni(OH)2分解为NiO和H2O,340~600℃区间的失重对应样品吸附的阴离子(如NO3-、CO32-)的除去[18]
NS-10、NS-20和NS-30三个样品都有4个失重区间,其中25~230℃区间的失重对应吸附水和层间水的去除,230~350℃区间的失重(~7.1%、8.5%和9.0%)对应DS-中烷基长链的分解[19],350~380℃区间的失重对应Ni(OH)2的分解,380~600℃区间的失重对应吸附的阴离子(如NO3-、CO32-)的除去,600~900℃区间的失重对应DS-中-SO4的分解[20]
上述结果表明,在NS-10、NS-20和NS-30三个样品中含有一定量的DS-阴离子
根据TGA曲线可计算出NS-20样品的分子式:Ni(OH)1.847-x-2y M x D y (SO4)0.056(DS)0.041(其中M和D分别表示NO3-和CO32-,DS表示十二烷基硫酸根)
根据XRD分析结果可以推断,DS-阴离子已进入α-Ni(OH)2的层间而使层间距增大
图1c给出了NS-0和NS-20两个样品的FT-IR谱
可以看出,两个样品在3450和1632 cm-1处的吸收峰分别对应层间水分子中-OH伸缩振动和吸附水分子的弯曲振动,表明两个峰都是α-Ni(OH)2的特征吸收峰[21];在2230 cm-1处的强吸收峰对应尿素在均相反应过程中分解生成的NCO-/NC-的伸缩振动[22];在1462和1370cm-1附近出现的是CO32-和NO3-的振动峰[23];在638和482 cm-1附近出现的吸收峰分别对应Ni-OH和Ni-O的振动[21, 24]
在NS-20的谱中2917和2853 cm-1附近出现的两个较强的吸收峰,对应DS-烷基长链基团中C-H的对称和不对称伸缩振动[25,26];在1206和1065 cm-1处出现的吸收峰对应DS-中S=O的伸缩振动[26],进一步证明材料中含有一定量的SDS
以上结果与XRD和TGA分析结果相符
图1d和图1e分别给出了NS-0和NS-20样品的Ni 2p XPS谱
可以看出,两样品的Ni 2p XPS谱都由6个峰组成,位于855.51和873.17 eV处的峰对应Ni2+;位于857.07和875.19 eV处的峰对应Ni3+;位于861.56和879.44 eV处的峰分别对应Ni 2p3/2和Ni 2p1/2卫星峰[27,28]
NS-20样品的S 2p XPS谱由位于168.92和169.94 eV的两个峰组成(图1f),分别对应DS-阴离子中S6+的S 2p3/2和S 2p3/2峰[29]
图2给出了NS-0、NS-10、NS-20和NS-30样品的SEM照片
从图2a可见,NS-0样品由大小不一的微米级球形颗粒团聚而成;在高放大倍数下可见球形颗粒又是由紧密的花瓣状初级纳米结构(厚度10~20 nm)构成(图2b,c)
从图2a、d、g、j可见,随着SDS量的增多球形颗粒的尺寸出现增大的趋势
其原因可能是,与层间阴离子NO3-相比DS-有更大的体积和空间位阻效应,在晶体形成过程中使初晶颗粒增大、材料更加蓬松多孔,进而使颗粒的尺寸增大
从图2d~l可见,NS-10、NS-20和NS-30样品的表面形貌相似,都由微米级类球形颗粒组成;与NS-0相比,其类球形颗粒具有更好的分散性,组成类球形颗粒的花瓣状初级纳米结构表现出更好的空间开放性
从图2e、h、k可见,NS-10、NS-20和NS-30三种样品均呈类球形花簇状;仔细对比图2f、i、l可见,NS-20比NS-10和NS-30样品材料三维结构更加开放,有利于电解液的渗透进而提高材料的电化学性能
以上结果表明,适量的SDS有利于形成开放的三维纳米结构,但是过量的SDS使开放的三维纳米结构坍塌
图2
图2NS-0、NS-10、NS-20和NS-30样品的SEM照片
Fig.2SEM images of NS-0 (a~c), NS-10 (d~f), NS-20 (g~i), and NS-30 (j~l) samples
2.2 电化学性能
图3a~d给出了NS-0、NS-10、NS-20和NS-30样品的CV曲线,扫描速度为0.1 mV·s-1
从图中可见,四个样品的CV曲线的特征相似
在首圈CV负向扫描过程中,在1.15 V附近出现的强还原峰对应Ni(OH)2还原为Ni0(Ni(OH)2+2Li++2e-→Ni0+2LiOH)和固体电解质界面(SEI)膜的生成,在0.75 V附近出现的较宽还原峰对应LiOH进一步还原为LiH(LiOH+2Li++2e-→Li2O+LiH);在首圈CV正向扫描过程中,在0.9~1.8 V的宽氧化峰对应LiH可逆氧化为LiOH,在2.3 V附近出现的氧化峰对应Ni0氧化为Ni2+[30,31]
从第二圈CV开始,样品的在1.15 V附近的还原峰强度明显降低并正移,其主要原因是在首圈负扫过程中SEI膜的生成产生了不可逆Li+消耗
仔细对比可以发现,随着循环次数的增加NS-0样品的CV曲线面积明显变小,表明电化学活性降低;而NS-10、NS-20和NS-30样品的第三、四圈CV曲线几乎重叠,表明其较高的循环稳定性
图3e给出了NS-0、NS-10、NS-20和NS-30四个样品在电流密度为0.2 A·g-1时活化5圈后又在电流密度为2 A·g-1条件下循环35圈的循环性能比较
结果表明,NS-0的循环性能最差,40次循环后其比容量已衰减至248 mAh·g-1;使用SDS辅助制备的三个样品均表现出更好循环性能,尤其是NS-20的循环性能最好,40次循环后其比容量仍然保持在800 mAh·g-1
图3f,g分别给出了NS-0和NS-20样品不同循环圈数的放电/充电曲线
可以看出,在充放电曲线的前5圈活化过程中放电曲线有两段不同斜率的近直线容量衰减,分别对应材料的两个嵌锂反应过程
在0.9~1.3 V附近的放电平台对应Ni(OH)2还原为Ni0(Ni(OH)2+2Li++2e-→Ni0+2LiOH)和固体电解质界面(SEI)膜的生成,在0.6~0.8 V附近出现的放电平台对应LiOH进一步还原为LiH(LiOH+2Li++2e-→Li2O+LiH)[32]
同时,NS-0和NS-20的首圈放电/充电比容量分别为2059/1316和1967/1245 mAh·g-1,对应的库伦效率分别为63.9%和63.3%
其主要原因是,材料在首次放电过程中生成SEI膜消耗了部分锂离子,引起了不可逆的容量损失[33],这与首圈CV测试结果(图3a~d)一致
随着循环次数的增加两样品的充电电位逐渐升高、放电电位逐渐降低和可逆比容量逐渐降低
NS-0样品经过10次循环后已没有明显的充放电平台,而NS-20样品即使经过40次循环后仍出现较好的充放电平台
以上结果表明,随着SDS用量的增加样品的的电化学性能先提高后降低,其中NS-20的性能最佳
NS-20样品突出的电化学性能,与其自身的微观结构密切相关:一方面NS-20样品的结晶性较差(图1a),结构缺陷使其含有更多的配位不饱和原子,有利于提高材料的电化学反应活性[34];另一方面,NS-20样品更加开放的三维结构有利于暴露更多的反应位点、缓解材料在充放电过程中的体积效应、促进电解液在电极中的渗透,进而改善电极的循环性能和动力学性能
表2对比了NS-20样品与文献报道的氢氧化镍基负极材料的循环性能
从表中可以看出,本文制备的NS-20样品其电化学性能较为优异
图3
图3NS-0、NS-10、NS-20和NS-30样品在0.1 mV·s-1扫描速度下的CV曲线以及四个样品循环性能的对比、NS-0和NS-20样品在不同循环次数下的充放电曲线
Fig.3CV curves of NS-0 (a), NS-10 (b), NS-20 (c), and NS-30 (d) samples at the scan rate of 0.1 mV·s-1; comparison of cycling performance of the four samples (e); charge/discharge curves of NS-0 (f) and NS-20 (g) samples in selected cycles
Table 2
表2
表2NS-20与用于LIBs的其他氢氧化镍基负极材料的循环性能的比较
Table 2Comparison of the cycling performance of the NS-20 with other previously reported nickel hydroxide-based anode materials for LIBs
Materials
|
Current density
/ A·g-1
|
Specific discharge capacity
/ mAh·g-1
|
Voltage window
/ V vs. Li/Li+
|
Reference
|
NS-20
|
2.0
|
800 mAh·g-1 after 40 cycles
|
0~3.0
|
This work
|
α-Ni(OH)2
|
1.0
|
743 mAh·g-1 after 50 cycles
|
0~3.0
|
[35]
|
Co-Ni-LDH
|
0.05
|
450.4 mAh·g-1 after 40 cycles
|
0~3.0
|
[36]
|
Ni-Co-LDH
|
0.1
|
335.4 mAh·g-1 after 50 cycles
|
0~3.0
|
[37]
|
Ni(OH)2-CTAB
|
0.5
|
952 mAh·g-1 after 25 cycles
|
0~3.0
|
[38]
|
Fe-Ni-LDH
|
0.2
|
1080 mAh·g-1 after 30 cycles
|
0~3.0
|
[39]
|
Ni- Fe-OH
|
0.85
|
540 mAh·g-1 after 50 cycles
|
0~3.0
|
[40]
|
Ni(OH)Cl
|
0.2
|
1236 mAh·g-1 after 150 cycles
|
0~3.0
|
[9]
|
图4a给出了NS-0、NS-10、NS-20和NS-30四个样品的倍率性能对比
可以看出,随着电流密度的增大样品的放电比容量逐渐降低
NS-0的倍率性能最差,在3 A·g-1电流密度下其比容量已降低至231 mAh·g-1
相比之下,SDS辅助制备的三个样品均表现出更好倍率性能;尤其是NS-20的倍率性能最佳,在3 A·g-1高电流密度下其比容量仍高达662 mAh·g-1,电流密度回到较低的0.5 A·g-1时其比容量恢复到980 mAh·g-1并保持良好的循环稳定性
图4b~d给出了NS-0、NS-20和NS-30三个样品在不同电流密度下的充放电曲线
可以看出,电流密度为0.2 A·g-1时三个样品的充放电平台均较为明显,随着电流密度的提高三个样品电极的充放电平台逐渐变短表明电极的极化逐渐变大
相比之下,NS-20样品的极化明显低于其他两个样品
图4
图4四个样品的倍率性能对比、NS-0、NS-20和NS-30样品在不同电流密度下的充放电曲线
Fig.4Comparison of magnification performance of four samples (a);charge and discharge curves of NS-0 (b), NS-20 (c) and NS-30 (d) samples at different current densities
i(V)=k1v+k2v1/2
(1)
i(V)/v1/2=k1v1/2+k2
(2)
进行定量分析[42],式中i(V)为特定电位下的CV电流值;k1v和k2v1/2分别为赝电容效应电流和扩散控制电流
根据 式(2)和图5c中的CV数据可计算出NS-20样品的赝电容效应电流
以扫速为0.5 mV·s-1的CV为例,图5e给出了NS-20样品在CV过程中的赝电容效应贡献
图5d~f给出了不同扫速下NS-10、NS-20和NS-30三个样品赝电容效应的贡献
可以看出,赝电容效应的贡献占据主导地位且随着扫描速度的提高其贡献比例逐渐增大
NS-10和NS-20样品比NS-30样品赝电容效应的贡献更为显著,扫描速度为0.9 mV·s-1时赝电容效应的贡献比例分别为74.9%、84.2%和68.6%
这表明,NS-10和NS-20样品突出的倍率性能与其显著的赝电容贡献密切相关,其中NS-20样品的赝电容效应最显著
图5
图5NS-0和NS-20样品在不同扫描速度下的CV曲线、NS-20样品在0.5 mV·s-1扫描速度下的CV曲线、NS-10、NS-20和NS-30样品在不同扫描速度下的赝电容贡献百分比
Fig.5CV curves of NS-0 (a) and (b) NS-20 samples at various scan rates; CV curve of NS-20 at 0.5 mV·s-1 (the region filled with blue color corresponds to pseudocapacitive effect) (c); pseudocapacitance contribution percentage diagram of NS-10 (d), NS-20 (e) and NS-30 (f) samples at different scanning speeds
图6a、b给出了NS-0、NS-10、NS-20和NS-30四个样品经过20次循环后的Nyquist图和对应的Bode图
可以看出,NS-0样品的Nyquist图由高频区的半圆、中低频区半圆和低频区的斜线组成,高频区的半圆对应SEI膜电阻和电化学反应电阻容抗弧(Rsf+ct),中低频区的半圆对应材料的体相电阻(Rb,包括活性材料电阻、复合电极中孔道内部电解液的离子电阻、材料充放电结构变化引起的电阻)[43];低频区的直线对应Li+在材料中扩散引起的Warburg阻抗[44]
对等效电路(含虚线框部分)的拟合结果表明,NS-0样品的Rsf+ct和Rb值分别为48.3和73.8 Ω·cm2
较大的Rb值表明其电化学活性低,与上文的循环性能(图3e)是相对应的
NS-10、NS-20和NS-30样品的Nyquist图都由高中频区的半圆和低频区的斜线组成,高中频区半圆对应SEI膜电阻和电化学反应电阻容抗弧,低频区斜线对应Li+在材料中扩散引起的Warburg阻抗
三个样品的EIS图均未出现明显的体相电阻容抗弧,表明其电化学活性较高
对等效电路图6c(不含虚线框部分)的拟合结果表明,NS-10、NS-20和NS-30样品的Rsf+ct值分别为33.3、29.4和33.6 Ω·cm2,明显低于NS-0的Rsf+ct值(48.3 Ω·cm2),表明其电化学反应更容易进行
其中NS-20的Rsf+ct值最低,表明其电化学反应活性最高,与其循环性能曲线(图3e)相对应
图6
图6NS-0、NS-10、NS-20和NS-30样品20次循环后的Nyquist图、Bode图和等效电路
Fig.6Nyquist plots (a) and Bode plots (b) of NS-0, NS-10, NS-20 and NS-30 samples after 20 discharge/charge cycles,equivalent circuit (c)
3 结论
以十二烷基硫酸钠(SDS)为辅助剂,采用简便的均相沉淀法可制备具有微/纳分级结构的α-Ni(OH)2材料
SDS辅助剂可细化α-Ni(OH)2的晶粒,拓宽α-Ni(OH)2层间距并有助于形成空间更加开放的微/纳分级形貌
SDS辅助制备的α-Ni(OH)2均比不使用SDS制备的α-Ni(OH)2具有更好的电化学性能,在n(SDS)/n(Ni2+)为2∶10条件下制备的α-Ni(OH)2具有最佳的循环稳定性(在2 A·g-1电流密度下循环40次后比容量保持在800 mAh·g-1)、出色的倍率性能(在3 A·g-1大电流密度下仍能具有710 mAh·g-1的可逆比容量)和显著的赝电容效应(在0.9 mV·s-1时其赝电容贡献率高达84.2%)
无SDS辅助制备的α-Ni(OH)2循环使用后出现明显的体相电阻,使其电化学活性和反应可逆性快速衰减;而SDS辅助制备的α-Ni(OH)2循环使用后不出现体相电阻且其Rct值明显低于无SDS辅助制备的α-Ni(OH)2的Rct值,使其反应动力学和循环性能更好
参考文献
View Option 原文顺序文献年度倒序文中引用次数倒序被引期刊影响因子
[1]
Gao R Z, Li X D, Liu W F, et al.
Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C
[J]. Chin. J. Mater. Res., 2018, 32(9): 713
[本文引用: 1]
高荣贞, 李晓冬, 刘文凤 等.
分级结构类球形MgFe2O4/C
复合材料的制备及其储锂性能
[J]. 材料研究学报, 2018, 32(9): 713
[本文引用: 1]
[2]
Li L F, Zeng B, Yuan Z P, et al.
One step hydrothermal preparation of SnO2@C composite and its lithium storage performance
[J]. Chin. J. Mater. Res., 2020, 34(8): 591
[本文引用: 1]
李玲芳, 曾 斌, 原志朋 等.
一步水热法制备纳米SnO2@C复合材料及其储锂性能研究
[J]. 材料研究学报, 2020, 34(8): 591
DOI [本文引用: 1]
以两种糖类化合物(葡萄糖与水溶性淀粉)为碳源,以SnCl<sub>4</sub>.5H<sub>2</sub>O为锡源用一步水热法制备了SnO<sub>2</sub>@C复合物
使用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、N<sub>2</sub>吸脱附法和透射电镜(TEM)表征其组成和微观结构,并采用恒电流充放电测试、循环伏安法(CV)和电化学阻抗谱(EIS)表征其作为锂离子电池负极材料的电化学性能
结果表明,糖类前驱体衍生的热解炭和直径为4~5 nm的SnO<sub>2</sub>纳米点生成了稳定的复合结构,炭基体的缓冲作用和材料纳米化缓解了SnO<sub>2</sub>的体积膨胀效应,使材料的结构稳定性和电化学性能提高
由于葡萄糖热解炭的有序度比淀粉热解炭更高,这组试样具有更好的循环性能和倍率性能,在2 A/g大电流密度下其比容量高于400 mAh/g
[3]
Shen X, Zhang X Q, Ding F, et al.
Advanced electrode materials in lithium batteries: Retrospect and prospect
[J]. Energy Mater. Adv., 2021, 2021: 1205324
[4]
Yao L H, Cao W Q, Zhao J G, et al.
Regulating bifunctional flower-like NiFe2O4/graphene for green EMI shielding and lithium ion storage
[J]. J. Mater. Sci. Technol., 2022, 127: 48
DOIURL [本文引用: 1]
[5]
Fang S, Bresser D, Passerini S.
Transition metal oxide anodes for electrochemical energy storage in lithium- and sodium-ion batteries
[J]. Adv. Energy Mater., 2020, 10(1): 1902485
DOIURL [本文引用: 1]
[6]
Han C, Cao W Q, Cao M S.
Hollow nanoparticle-assembled hierarchical NiCo2O4 nanofibers with enhanced electrochemical performance for lithium-ion batteries
[J]. Inorg. Chem. Front., 2020, 7(21): 4101
DOIURL [本文引用: 1]
[7]
Kim H, Choi W I, Jang Y, et al.
Exceptional lithium storage in a Co(OH)2 Anode: Hydride formation
[J]. ACS Nano, 2018, 12(3): 2909
DOIURL [本文引用: 1]
[8]
Hu Y Y, Liu Z G, Nam K W, et al.
Origin of additional capacities in metal oxide lithium-ion battery electrodes
[J]. Nat. Mater., 2013, 12(12): 1130
DOI
[9]
Lim S H, Park G D, Jung D S, et al.
Towards an efficient anode material for Li-ion batteries: understanding the conversion mechanism of nickel hydroxy chloride with Li-ions
[J]. J. Mater. Chem., 2020, 8A(4) : 1939
[本文引用: 3]
[10]
Yao J H, Li Y W, Huang R S, et al.
Crucial role of water content on the electrochemical performance of α-Ni(OH)2 as an anode material for lithium-ion batteries
[J]. Ionics, 2021, 27(1): 65
DOI [本文引用: 1]
[11]
Li Y W, Pan G L, Xu W Q, et al.
Effect of Al substitution on the microstructure and lithium storage performance of nickel hydroxide
[J]. J. Power Sources, 2016, 307: 114
DOIURL [本文引用: 1]
[12]
Cao W Q, Wang W Z, Shi H L, et al.
Hierarchical three-dimensional flower-like Co3O4 architectures with a mesocrystal structure as high capacity anode materials for long-lived lithium-ion batteries
[J]. Nano Res., 2018, 11(3): 1437
DOI [本文引用: 1]
[13]
Mahmood N, Tang T Y, Hou Y L.
Nanostructured anode materials for lithium ion batteries: Progress, challenge and perspective
[J]. Adv. Energy Mater., 2016, 6(17): 1600374
DOIURL [本文引用: 1]
[14]
Zheng M B, Tang H, Li L L, et al.
Hierarchically nanostructured transition metal oxides for lithium-ion batteries
[J]. Adv. Sci., 2018, 5(3): 1700592
DOIURL [本文引用: 1]
[15]
Inamdar A I, Chavan H S, Aqueel Ahmed A T, et al.
Macroporous Cu(OH)2 nanorod network fabricated directly on Cu foil as binder-free Lithium-ion battery anode with ultrahigh capacity
[J]. J. Alloys Compd., 2020, 829: 154593
DOIURL [本文引用: 1]
[16]
Delmas C, Tessier C.
Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity
[J]. J. Mater. Chem., 1997, 7(8): 1439
DOIURL [本文引用: 1]
[17]
Zhang Y Q, Tao L, Xie C, et al.
Defect engineering on electrode materials for rechargeable batteries
[J]. Adv. Mater., 2020, 32(7): 1905923
DOIURL [本文引用: 1]
[18]
Li Y W, Huang R S, Ji J C, et al.
Facile preparation of α-Ni(OH)2/graphene nanosheet composite as a cathode material for alkaline secondary batteries
[J]. Ionics, 2019, 25(10): 4787
DOI [本文引用: 1]
[19]
Tzounis L, Herlekar S, Tzounis A, et al.
Halloysite nanotubes noncovalently functionalised with SDS anionic surfactant and PS-b-P4VP block copolymer for their effective dispersion in polystyrene as UV-blocking nanocomposite films
[J]. J. Nanomater., 2017, 2017: 3852310
[本文引用: 1]
[20]
Sotiles A R, Gomez N A G, Wypych F.
Thermogravimetric analysis of layered double hydroxides intercalated with sulfate and alkaline cations [M6 2+Al3(OH)18] [A +(SO4)2] 12H2O (M 2+=Mn, Mg, Zn; A +=Li, Na, K)
[J]. J. Therm. Anal. Calorim., 2020, 140(4): 1715
DOI [本文引用: 1] " />
High-performance electrode materials that can be easily prepared are imperative for obtaining highly efficient lithium-ion batteries (LIBs). In this study, graphene-wrapped CoNi-layered double hydroxide (LDH) microspheres were first fabricated and used as an anode material for LIBs. The composite electrode with a mass ratio of 2.5u2009:u20091 (CoNi-LDH/graphene) showed a high reversible specific capacity of 1428.0 mA h g-1 at 0.05 A g-1, excellent rate performances (977.5, 670.8 and 328.1 mA h g-1 at 0.5, 2 and 10 A g-1, respectively) and long-cycling performance (75% retention at 10 A g-1 after 10u2009000 cycles). The excellent electrochemical performances could be due to the following reasons: CoNi-LDHs had high chemical reactivity, and the graphene shell improved the electrical conductivity of CoNi-LDHs, which facilitated charge transfer; the graphene shell also suppressed the volume expansion of metal hydroxides during charge-discharge cycling and enhanced the cycle stability of the electrode. More importantly, this is a significant study to directly use LDHs as a potential electrode for LIBs, which can promote applications of electro-active LDHs in energy storage and conversion fields.
[37]
Lu Y J, Du Y J, Li H B.
Template-sacrificing synthesis of Ni-Co layered double hydroxides polyhedron as advanced anode for lithium ions battery
[J]. Front. Chem., 2020, 8: 581653
DOIURL [本文引用: 1] " />
Nickel hydroxide has attracted much attention as an anode material for lithium-ion batteries (LIBs) due to its high specific capacity, low cost, and easy preparation. However, the poor cycling stability greatly hampers its application. Herein, Fe-doped nickel hydroxide powders with a high tap density (2.16 g cm) are synthesized by a simple chemical co-precipitation method. Compared to undoped nickel hydroxide, this Fe-doped nickel hydroxide exhibits better lithium storage activity, enhanced cycling stability and rate capability, and improved electrochemical reaction kinetics. As an anode material for LIBs, the Fe-doped nickel hydroxide delivers a specific discharge capacity of 1080 mA h g at 200 mA g after 30 cycles, which is almost twice that (519 mA h g) of undoped nickel hydroxide; at a high current density of 2000 mA g, Fe-doped nickel hydroxide shows a specific capacity of 661 mA h g, significantly higher than that (182 mA h g) of undoped nickel hydroxide. Kinetic analysis reveals that Fe doping decreases the electrochemical reaction resistance and improves the lithium ion diffusivity in a nickel hydroxide electrode.
[40]
Niu K Y, Lin F, Fang L, et al.
Structural and chemical evolution of amorphous nickel iron complex hydroxide upon lithiation/delithiation
[J]. Chem. Mater., 2015, 27(5): 1583
DOIURL [本文引用: 1]
[41]
Choi C, Ashby D S, Butts D M, et al.
Achieving high energy density and high power density with pseudocapacitive materials
[J]. Nat. Rev. Mater., 2020, 5(1): 5
DOI
[42]
Li Y W, Huang Y, Zheng Y Y, et al.
Facile and efficient synthesis of α-Fe2O3 nanocrystals by glucose-assisted thermal decomposition method and its application in lithium ion batteries
[J]. J. Power Sources, 2019, 416: 62
DOIURL [本文引用: 1]
[43]
Cheah Y L, Gupta N, Pramana S S, et al.
Morphology, structure and electrochemical properties of single phase electrospun vanadium pentoxide nanofibers for lithium ion batteries
[J]. J. Power Sources, 2011, 196(15): 6465
DOIURL [本文引用: 1]
[44]
Yan B, Li X F, Fu X Y, et al.
An elaborate insight of lithiation behavior of V2O5 anode
[J]. Nano Energy, 2020, 78: 105233
DOIURL [本文引用: 1]
Synthesis and Li-storage performance of hierarchical spheroid composites of MgFe2O4/C
1
2018
声明:
“Ni(OH)2 负极材料的十二烷基硫酸钠辅助制备及其储锂性能” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)