1.本技术涉及电池技术领域,尤其涉及一种液冷储能系统及冷却液的制备方法。
背景技术:
2.目前,液冷储能设备中通常设置有供水管网和回水管网,使冷却液在各管网中循环流动,以达到对储能设备进行散热的目的。由于储能设备中存在着众多电池簇,各供水管网和回水管网以电池簇为单元进行散热设计,为了保证不同电池簇中的每个电芯的温升和温差等指标满足实际需求,需要保证分配到每个电池簇的冷却液流量保持在一定偏差范围内。
3.在现有技术中,主要采用质量百分比为50%的乙二醇与质量百分比为50%纯净水混合作为液冷储能设备的冷却介质,但该冷却介质换热能力有限,换热能力的不足又会进一步影响储能设备本身的性能,比如储能设备的存储电量、充放电倍率等。
4.此外,为了对各分支管道的流量进行控制,一般采用两种方式:其一是采用阀门对每个支管的流量进行单独控制,但该方法不仅成本高,对阀门的控制也很复杂;其二是对管道的内径进行优化,该方法的缺点是单簇结构复杂,且单簇结构中控制流量分配零件的外形一致,仅在内部尺寸上有差别,因此这类零件不仅需要定制开发,且需严格按照顺序安装。虽然会采用计算流体动力学(computational fluid dynamics,cfd)等手段对零件进行仿真设计,但为了满足各支管流量偏差值的要求,零件的尺寸差距仅仅在1mm左右,存在安装错误的潜在风险,而且已有产品的管道设计通用性差。
技术实现要素:
5.有鉴于此,本技术提出了一种液冷储能系统及冷却液的制备方法,能够使得冷却液的热传递更加有效,提高了冷却液的导热系数,优化了热运输性能,进而使得本技术的冷却液相较于普通冷却液在同样的流量下能够带走更多热量,改善了冷却液的散热效果,拓宽了冷却液的流量偏差范围,放宽了液冷管道设计的约束。在此基础上,本技术的管道和接头设计允许的误差范围也相应增加,降低了管道安装错误的风险,提高了管道设计的通用性。
6.第一方面,本技术的实施例提供了一种液冷储能系统,所述液冷储能系统包括:至少一个电池簇,所述电池簇包括按照行列形式排布的多个电池包;水箱,设置在所述电池簇的侧面,所述水箱用于容置冷却液;液压泵,与所述水箱相接,所述液压泵用于抽取所述水箱中的冷却液,并将抽取的冷却液输送至进水管网;进水管网,与所述液压泵相接,所述进水管网用于将所述液压泵抽取的冷却液分配至所述电池簇中各电池包的液冷板;回水
声明:
“液冷储能系统及冷却液的制备方法与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)