本发明属于抗肿瘤靶向技术领域,公开了一种纳米-金属有机骨架化合物复合材料负载siRNA在制备抗肿瘤药物中的应用。所述的纳米-金属有机骨架化合物复合材料为纳米X-金属有机骨架化合物MIL-101,X为硒、钌或金;所述的siRNA为Pgp-siRNA和VEGF-siRNA。本发明利用小干扰RNA逆转肿瘤细胞多药耐药性,以及纳米药物高效、安全的载药功能,合成了具有良好抗肿瘤活性的纳米-金属有机骨架化合物复合材料,并以此作为siRNA的载体,发挥siRNA对多药耐药肿瘤细胞的抑制作用。纳米X-金属有机骨架化合物既作为抑制肿瘤的药物,也作为负载siRNA载体的协同作用,从而应用于制备抗肿瘤药物中。
本发明公开一种自支撑高密度的金属氧化物/氮掺杂石墨烯复合电极及其制备方法和应用。该复合电极首先通过水浴反应得到氮掺杂石墨烯,再将氮掺杂石墨烯分散在有机溶剂中,滴加溶有金属盐的有机溶剂,分散均匀后进行水热反应,制得粉末状金属氧化物/氮掺杂石墨烯复合材料;再加入少量氧化石墨烯,使金属氧化物/氮掺杂石墨烯复合材料在氧化石墨烯中分散均匀,通过二次水热反应制得金属氧化物/氮掺杂石墨烯水凝胶,最后经过切片、自然皱缩干燥制得。本发明的复合材料具有自支撑结构,密度大于1.0g/cm3,通过两步水热法得到的电极片可直接作为锂离子电池或钠离子电池的电极,实现其高体积容量、高可逆性和高倍率性能的电化学性能。
本发明公开了一种耐磨ZrO2?Al2O3复相陶瓷颗粒及其制备方法和应用,属于陶瓷复合材料制备技术领域,本发明耐磨ZrO2?Al2O3复相陶瓷颗粒成分重量百分比组成为:10?90%的稳定ZrO2以及10?90%的Al2O3;采用电熔融、水冷制备得表面粗糙、粒度大小0.5?7mm的高耐磨性ZrO2?Al2O3复相陶瓷颗粒,生产效率高,性能稳定,并将耐磨ZrO2?Al2O3复相陶瓷颗粒应用于制备钢铁基复合材料的增强体,能显著增强复合材料耐磨性。
本发明公开了一种内置纤维增强复合管约束金属骨架混凝土的组合剪力墙,在剪力墙内部布置有纤维增强复合材料管,纤维增强复合材料管内设置有金属骨架,在纤维增强复合材料管与金属骨架之间填充混凝土。本发明利用利用纤维增强复合材料约束混凝土强度高、变形能力好,同时具有明显二阶刚度的特点,将FRP管约束置于墙体变形或者受力较大部位,如墙端、两个墙肢交叉处、多个墙肢交叉处位置中的一处或者多处,并在所述纤维增强复合材料管约束混凝土内埋设金属骨架,形成纤维增强复合材料约束金属骨架混凝土,本发明的组合剪力墙不仅具有变形能力强、受压区混凝土不易压碎的特点,还具有明显的二阶刚度使墙体在大变形时候具有自复位功能。
本发明涉及了一种可降解塑料复合材料及其制备方法,该可降解塑料复合材料以由二氧化碳和环氧丙烷合成的可降解聚合物聚甲基乙撑碳酸酯为基体,添加乙烯乙烯醇共聚物,通过熔融混合或溶液混合制备,可用于制造一次性塑料制品。聚甲基乙撑碳酸酯中引入乙烯乙烯醇共聚物后,不仅强度得到很大提高,而且由于乙烯乙烯醇共聚物具有吸水性,能促进聚甲基乙撑碳酸酯的生物降解。该可降解塑料复合材料是一种降解性能好,机械强度高,且成本低的降解塑料。
本发明属于肿瘤靶向成像技术领域,公开了手性纳米硒复合材料负载siRNA在制备抗肿瘤药物中的应用,其中手性纳米硒复合材料及其负载的MDR-siRNA均具有抑制肿瘤的活性。本发明制备得到的功能化纳米硒既作为抑制肿瘤的活性成分,也作为负载MDR-siRNA的载体,协同具有抑制多药耐药肿瘤细胞生长的MDR-siRNA实现高效抗肿瘤的作用。且本发明采用的修饰剂能有效调控纳米硒的形貌及尺寸,有利于增加细胞的药物摄取量,减少外排,从而保证细胞内药物维持在较高水平。同时,本发明制备的手性纳米硒复合材料负载siRNA具有荧光特性,可作为荧光纳米材料应用于靶向成像。
本发明属于医用材料的技术领域,公开了一种医用植物纤维热塑性复合固定材料及其制备方法。所述固定材料由植物纤维热塑性复合材料、胶黏剂以及医用织物制备而成;或者直接由植物纤维热塑性复合材料制备而成;所述制备植物纤维热塑性复合材料的原料包括热塑性高分子材料、植物纤维、无机填料、硅烷偶联剂。所述方法为将植物纤维热塑性复合材料的原料进行共混和挤出,造粒,压制平板,冲孔,得到植物纤维热塑性复合材料;或者采用胶黏剂将植物纤维热塑性复合材料与医用织物粘合起来,得到医用植物纤维热塑性复合固定材料。所制备的固定材料具有密度低、透气性好、性能好、软化温度低、耐水性好等特点。
本发明是一种钢背/碳纤针织物增强衬层传动螺母、材料、装置及方法。钢、铸铁螺母基体的内表面设有一层整体式碳纤维针织物增强体的自润滑复合材料衬层。自润滑复合材料衬层的基体为低黏度环氧树脂,基体中加入短切碳纤维为二次增强物,并加入改性和填充物。整体式筒状碳纤针织物紧套工艺丝杆形成螺纹管状增强体。自润滑复合材料制作传动螺母的成型装置包括工艺螺杆(1)、基体螺母(4)、两个定位螺母(3)和锁紧螺母(2),工艺螺杆(1)与基体螺母(4)之间预留1mm~2mm的间隙,以便容纳衬层,基体螺母上开有用以向衬层空间补充浆料的小孔(5)。成型装置可保证基体螺母和工艺螺杆良好的同轴度。本发明的传动螺母具有良好的承载能力和减磨耐磨性能,而且工艺性好、容易实现产业化。
本发明提供了一种激光冲击层裂缺陷的超声检测方法及装置,通过对复合材料进行超声检测获取超声信号初始值,对复合材料进行激光冲击后测得超声信号的特征值,通过判断超声信号特征值是否等于超声信号初始值,当超声信号特征值等于超声信号初始值时,则增大激光冲击的功率进行冲击和超声检测,直到超声信号特征值不等于超声信号初始值,再继续增大激光的冲击功率和超声检测直到当前一次冲击后的复合材料测得的超声信号特征值与后一次冲击后的复合材料测得的超声信号特征值相同时,则获取后一次冲击复合材料的激光冲击的功率;根据后一次冲击复合材料的激光冲击的功率,获取复合材料的粘接强度,从而实现粘接界面的缺陷发生到脱粘过程的检测。
本发明公开了一种应急处理水体中重金属污染物的沉积物的稳定化方法:制备生物复合材料浆料,首先将熟石膏与粘土在容器中混合,加入水制成浆料;然后,往制作好的浆料中加入硫酸盐还原菌,获得生物复合材料浆料;水体受到重金属污染物污染时,向该水体中加入30%的碱以及混凝剂,同时向水体中投加步骤一获得的生物复合材料浆料;在去除水体重金属的同时构建了含有生物复合材料、重金属氢氧化物絮体的底泥沉积物;底泥沉积物中重金属形态状态发生化学、生物变化;在底泥的缺氧环境中,硫酸盐还原菌将SO42-还原为S2-,S2-与底泥中的游离出的重金属离子反应形成金属硫化物沉淀,从而达到固定底泥中重金属的目的,使沉积物稳定化。
本发明公开了一种含氟纳米无机粒子增韧聚合物及其制备方法,其通过接枝聚合的方法,在纳米无机粒子表面引入含氟聚合物,然后将改性纳米粒子与聚合物熔融共混,制得纳米粒子填充聚合物复合材料。在加强纳米粒子和聚合物基体间的界面相互作用的同时,利用含氟聚合物的自润滑特性,减弱纳米粒子之间的相互作用,提高复合材料受力时纳米粒子的流动能力,增加了能量耗散,从而起到增韧聚合物基体的目的。本发明技术成熟、工艺简单,成本低,所制得复合材料的韧性显着提高,同时拉伸强度、刚性以及加工流动性等均有一定程度的提高。本发明可以用于制备以聚乙烯、聚丙烯和聚苯乙烯等通用塑料为基体的纳米复合材料。
本发明涉及制备一种低气味聚丙烯复合材料及其制备方法。本发明所述聚丙烯复合材料由如下按重量百分数计算的组分组成:聚丙烯50~78%;增韧剂7~20%;矿物填料0~30%;气味抑制剂0.5~4%。所述气味抑制剂由如下按重量百分数计算的组分组成:粘土2%~50%;沸石25%~70%;金属氧化物0%~50%。本发明所述聚丙烯复合材料可以通过将材料预混后经挤出、造粒、干燥制得。本发明工艺简单,综合性能优异,制备的复合聚丙烯内饰件材料气味低。本发明以粘土、沸石、金属氧化物三种组分组成的气味抑制剂所制备的低气味聚丙烯复合材料,气味等级可以达到PV3900标准的3级,符合汽车内外饰件使用的要求。
本发明是一种加固受弯混凝土构件的装置及方法。本发明在被加固混凝土构件的受拉面两端开槽,将带预留孔的钢板分别顶在构件两端,张拉钢铰线使钢板与混凝土构件形成反力台;将粘结夹持纤维增强复合材料片端的钢夹具嵌入槽内,并用锚栓将一端的夹具锚固于混凝土中,另一端的夹具利用螺栓和搭接钢块进行连接;再把穿过钢板与搭接钢块连接的高强螺栓作为张拉杆,利用千斤顶对纤维增强复合材料进行张拉;最后粘贴纤维增强复合材料并把张拉端的夹具锚固于混凝土中,在被加固混凝土构件的两端粘贴U型箍,待粘结胶固化后逐步分级放张预应力。本发明利用被加固混凝土构件本身作为张拉反力平台,避免制作复杂的张拉装置,并解决了纤维增强复合材料预应力的锚固问题。
本发明公开了一种支撑绝缘子的制作方法及制作装置,其中所述制作方法包括以下步骤:制作第一复合材料和第二复合材料,所述第一复合材料的介电常数小于或大于所述第二复合材料的介电常数;将所述第一复合材料和所述第二复合材料组合形成浇注料,并不断调整所述第一复合材料和所述第二复合材料的组合比例,将不同组合比例的所述浇注料陆续注入模具,所述模具内设有用于制作支撑绝缘子的型腔;加热所述模具,使得模具内的浇注料固化,形成所述支撑绝缘子。本发明可快速地制作出从高压侧到接地低压侧特性(如介电常数)呈梯度渐变的支撑绝缘子,实现支撑绝缘子电场优化,并且提升电场优化效果,制作方式简单有效。
本实用新型提供了一种激光冲击层裂缺陷的超声检测装置,所述超声检测装置包括复合材料夹具、综合测试系统、激光冲击系统和超声检测系统,通过复合材料夹具夹持住复合材料,综合测试系统控制超声检测系统对复合材料进行检测并将检测结果反馈到综合检测系统,判断复合材料是否出现缺陷,综合测试系统控制激光冲击系统对复合材料进行激光冲击,冲击后再控制超声检测系统检测复合材料是否出现缺陷,综合测试系统反复控制激光冲击系统对复合材料进行冲击和超声检测系统进行超声检测,激光冲击系统对复合材料激光冲击的功率逐级上升,直至超声检测系统测得的结果判定复合材料已经完全脱粘,根据最后一次激光冲击的功率可以得到复合材料的粘合强度。
本发明公开一种泡沫陶瓷增强纤维气凝胶隔热材料及其制备方法,首先是含纤维硅溶胶的泡沫陶瓷复合材料的制备,通过溶胶凝胶工艺,不断搅拌,使得短纤维均匀分散在SiO2溶胶里,然后通过真空浸渗技术将纤维与溶胶的复合材料填充在多孔陶瓷的孔内,通过制备气凝胶的老化、改性、干燥等工艺,制备出隔热材料。该隔热材料强度高,导热系数低,其中泡沫陶瓷作为复合材料的骨架,起着增强支撑作用,复合材料的主要强度由此来承担;短纤维一方面具有一定的增强作用,另一方面可防止SiO2气凝胶干燥后收缩太大,从泡沫陶瓷中脱落;SiO2气凝胶在复合材料中凭借其优越的隔热性能,主要起着隔热作用。
本发明是一种碳纤维增强自润滑复合材料及采用该材料注射成型制造钢背衬自润滑复合材料传动螺母的方法及装置。本发明以环氧树脂、碳纤维及各种填料、改性物质组成自润滑复合材料。将复合材料以注射成型的方式,在钢螺母基体表面形成自润滑衬层。注射成型装置包括基体螺母(2)及旋入基体螺母(2)中的工艺丝杆(4)和两个定位螺母(1)。基体螺母(2)与工艺丝杆(4)之间预留1mm~2mm的间隙,且此间隙在轴向、周向和径向均均匀分布。注射前,在工艺丝杆(4)表面用胶带粘贴或石蜡绘制出适当厚度的润滑油道。将复合材料用料筒注射进成型装置,待注射完毕且衬层完全固化后,卸下定位螺母(1),并将制成的传动螺母(2)从工艺丝杆(4)上拧出,清除润滑油道中的残留物,获得所需要的传动螺母(2)。新型螺母承载能力大、摩擦系数小、动态性能好。
本发明利用导电聚合物PEDOT及其水溶液分散剂PSS作为纳米Si粉的包覆层以及碳源,提供一种性能优异的锂离子电池负极新硅复合材料及其制备方法。所述Si/C复合材料由含Si类储锂材料作为主要活性物质,先通过原位聚合反应在Si的表面聚合PEDOT:PSS,然后把制备的Si/PEDOT:PSS复合物在惰性气氛下经由高温碳化处理,制得Si/C复合材料。本发明制备的复合材料有少量S元素掺杂。经过电镜分析,纳米Si颗粒被均匀的镶嵌在PEDOT:PSS聚合物和碳基体中。本发明制备原料便宜,纳米Si在导电聚合物中的包覆在水溶液中进行,工艺简单环保,收率高。制备的Si/C复合材料具有极低的初始不可逆容量损失(2.8%),材料的充放电性能优异,便于工业化生产,在电动汽车等动力电源上有潜在的应用前景。
本发明的目的在于提供一种复合碳纳米管材料及其制备方法和应用,将碳基材料和过渡金属化合物复合,研制出一种新型的复合材料,属于电化学新材料的技术领域,制备方法包括如下步骤:1)取TATAT、Ni(NO3)2•6H2O、碳纳米管、DMF以及去离子水混合,超声搅拌之后进行微波反应以及高温回流,最后洗涤、烘干得到Ni‑MOF‑CNT复合材料;2)取步骤1)制得的Ni‑MOF‑CNT复合材料在高温下煅烧,冷却后得到NC‑Ni‑CNT复合材料;3)取步骤2)制得的NC‑Ni‑CNT复合材料和硫代乙酰胺混合,超声搅拌之后密封、进行水热反应,反应结束之后冷却、洗涤、干燥得到NC‑Ni3S4‑CNT复合材料;与碳基超级电容器和赝电容电容器相比较,这种复合材料可以实现更高的比电容、库伦效应、更好的循环稳定性和更优异的能量密度。
本发明公开了一种净化空气污染的方法,该方法包括将稀土元素化合物掺杂的纳米二氧化钛溶胶涂抹在植物叶片上,将该植物放于需要空气净化的环境中。本发明所述净化空气的方法,将光触媒与植物触媒融合的生物纳米材料结合应用,在强化空气污染净化功效显著,能为解决城市空气污染问题提供一种节能环保、高效安全、先进可靠、成本低廉的解决方案。
本发明属于植物纤维技术领域,尤其涉及木塑材料用的甘蔗渣的超声化学前处理方法。目前甘蔗渣的处理有物理法和化学法,但这些方法,总会产生大量黑液,且使木质素、半纤维素大量降解,一方面是资源的浪费;另一方面对环境造成污染。本发明所提供的用于木塑材料制备的甘蔗渣超声化学前处理方法是在特定超声条件下,将蔗渣与包括催化剂、氧化剂、反应介质pH调节剂、消晶介质控制剂的处理液按固液比条件进行超声处理,引发水解、裂解、氧化化学反应,配合物理化学消晶与催化氧化、分解反应,对甘蔗渣进行漂白和脱除小分子物质。本发明所述超声化学前处理方法具有条件温和、成本低、节能和环保等优点,具有很大的实用价值。
本发明公开了一种氧化镁/锶铁氧体/HPA/PA66复合填充型聚合物基导热注塑磁材料,含有10~40%基体树脂、10~40%导热填料、40~70%锶铁氧体组成的主材料;另外以总量计,还含有增韧剂0.2~1%、偶联剂1~3%、抗氧剂0.1~0.5%、润滑剂0.1~1.5%、流动助剂0.1~2%。本发明在导热的基础上引入注塑磁,优化了制备工艺,先用钛酸酯偶联剂处理磁粉,再用硅烷偶联剂对磁粉和氧化镁进行改性,并且在酸性条件下,达到了显著的协同增效作用,获得的产品磁性能优异,导热系数高,加工成型方便,性价比高,兼具导热塑料及注射成形粘结磁体的优异性能,可作为非金属永磁材料被广泛应用于高频弱电领域。
一种高压合成绝缘子包括绝缘芯棒、外绝缘套、连接套等,绝缘芯棒采用的表面采用的界面处理技术,是涂覆一层高附着力液体硅胶形成硅胶涂层,使内绝缘芯棒的闪络电压提高30%以上,解决了高压合成绝缘子内部漏电闪络击穿的难题,具有良好的防止内部漏闪电性能、机械强度高,抗剪、拉强度高的优点。
本申请公开了一种胶接结构材料的检测方法,包括:利用激光层裂装置和平面拉伸装置对同类型的多个标准胶接结构试样分别进行激光层裂法测试和平面拉伸测试,获取同一标准胶接结构试样的激光能量阈值和界面结合强度;将各个所述激光能量阈值和对应的所述界面结合强度进行拟合,获取结合强度‑能量阈值的函数关系曲线;利用所述函数关系曲线进行目标胶接结构材料的检测。本申请通过获取结合强度‑能量阈值的函数关系曲线,并利用结合强度‑能量阈值的函数关系曲线对目标胶接结构材料进行检测,该方法准确性高、灵活性好,不需制备特定的检测试样,提高效率,减少检测周期。本申请同时还提供了胶接结构材料的检测设备,具有上述有益效果。
本发明公开了一种VOC吸附填料的制备方法,包括如下步骤:(1)将一定量的可溶性铜盐、去离子水、硝酸钕和尿素溶液混合并反应,待反应完成后冷却,经固液分离、洗涤和干燥,获得沉淀物A;(2)将沉淀物A进行煅烧,得负载Nd离子的多孔纳米CuO介质材料;(3)将所得负载Nd离子的多孔纳米CuO介质材料和硅藻土混合均匀,即得VOC吸附填料。本发明制备的VOC吸附填料具有优良吸附性能的VOC吸附填料,能够满足实际应用过程中对于VOC吸附性能要求提高的实际使用需求。
本发明提供一种NiMn‑LDH/CNT/GO三元复合物的制备方法,还提供了一种基于上述催化材料通过催化发光快速检测乙酸的方法。用于催化发光的催化剂为新型双金属氢氧化物复合物为通过共沉淀法一步合成,为NiMn‑LDH/CNT/GO。本分析方法是通过载气氧气将乙酸导入反应池,经催化剂催化氧化后,产生化学发光信号并被超微弱化学发光分析仪所记录。本分析方法中,乙酸产生的催化发光信号与其含量呈良好的线性关系。本方法能够实现对乙酸的快速灵敏检测,可应用于酵素产品中挥发性有机酸的检测,具有一定的实际应用价值。
本发明提供一种球形硅酸锰锂复合正极材料的自组装制备方法,将碳纳米管与硅酸锰锂材料复合,利用碳纳米管的超高电导率改善硅酸锰锂的导电性能。该方法使用碳纳米管为晶核,原位制备由纳米硅酸锰锂颗粒自组装形成的球形硅酸锰锂颗粒,碳纳米管穿插于球形二次颗粒之间。本发明还提供包含由上述制备方法制得的自组装球形硅酸锰锂与碳纳米管复合正极材料的正极组合物,以及包含上述正极组合物的锂离子二次电池。
一种塑料和天然纤维混合物的塑料回收方法,包括,形成第一塑料组分、第二塑料组分、第三纤维组分和第四添加剂组分的混合物,所述第一塑料组分包含聚乙烯和聚丙烯;第二塑料组分包含聚乙烯对苯二甲酸酯、聚苯乙烯、丙烯酸、尼龙、聚碳酸酯和生物塑料,其中所述第一塑料的重量百分比大于第二塑料组分的重量百分比,并且第一塑料组分和第二塑料组分的总和占混合物总重量的10%‑95%,第三纤维组分包含木材、纸和天然纤维,所述第三纤维组分占混合物总重量的0%‑85%,第四添加剂组分至少包含碳酸钙和稳定剂,其中所述第四添加剂组分占混合物总重量的5%‑45%,将所述混合物团聚,研磨,并进行造粒。
本发明公开了一种环糊精基星型嵌段聚合物的制备方法,包括以下步骤:1)将β-环糊精、P2S5、对甲氧基苯甲酸三者在碱性及无氧条件下于有机溶剂中进行充分回流反应,将所得产物进行纯化,得到RAFT聚合链转移剂;2)将上步制备的RAFT聚合链转移剂、甲基丙烯酸甲酯、功能单体三者混合,在自由基引发剂存在以及无氧条件下于溶剂中进行聚合反应,停止聚合,所得产物进行纯化分离;3)以上步得到的产物作为大分子链转移剂,在自由基引发剂存在以及无氧条件下,将亲水单体、大分子链转移剂于溶剂中进行聚合反应,冰水浴冷却停止聚合,将所得产物纯化分离,再用还原剂还原即可。本发明的合成路线简单,星型嵌段共聚物结构明确,纳米金的粒径及形貌可控。
中冶有色为您提供最新的广东广州有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!