本发明涉及一种核‑壳结构催化剂载体及其制备方法,制备方法包括步骤:采用氨水为活化剂,去离子水为介质,对催化剂载体X表面进行预活化,然后进行干燥;其中,催化剂载体X选自HZSM‑5、Al2O3和SiO2中的一种;在正丁醇溶液中加入干燥后的催化剂载体X,再加入去离子水,搅拌,得到悬浮液;然后加入正丁醇锆,搅拌,再转移至高压反应釜进行水热合成;冷却后离心分离,将收集得到的固体干燥,得到核壳结构ZrO2@X催化剂载体。本发明通过采用水热法制备氧化锆包覆的氧化铝复合材料,合成具有膜层连续的核‑壳催化剂载体,并通过正丁醇的疏水性,增加ZrO2颗粒在载体表面负载的稳定性,从而增强核‑壳催化剂载体的稳定性。
一种纳米纤维素/壳聚糖复合泡沫的制备方法,本发明涉及纤维素复合材料领域,它为了解决传统泡沫、气凝胶等材料生物相容性差以及壳聚糖复合材料热稳定性低的问题。复合泡沫的制备方法:一、对含有纤维素的生物质原料进行化学处理和机械解纤处理,制备纳米纤维素水悬浊液;二、向冰醋酸溶液加入壳聚糖配制壳聚糖混合溶液;三、将纳米纤维素水悬浊液与壳聚糖混合溶液混合,得到纳米纤维素/壳聚糖复合溶液;四、对复合溶液进行低温冷冻处理;五、对冻结的混合溶液进行干燥处理,得到纳米纤维素/壳聚糖复合泡沫。本发明所用原料均为天然高分子材料,生物相容性好,热体积收缩率低,热稳定性良好。
碳纤维表面的溴代环氧树脂向上浆剂扩散的研究方法,它属于聚合物基复合材料改性领域。本发明解决了现有方法对树脂向上浆剂层扩散的研究很难进行的问题。本发明的方法如下:一、将玻璃洗净后烘干;二、将碳纤维的上浆剂溶液涂敷在玻璃表面上,烘干;三、再涂敷后烘干;四、重复步骤三的操作;五、在上浆剂层表面均匀撒上溴代环氧树脂,加热,冷却至室温,沿纵向方向切割,断面依次通过扫描电子显微镜和X射线能谱仪对上浆剂层中的溴元素线性扫描得到能谱图即可。本发明采用模型化合物,对不同温度及时间下树脂向上浆剂中的扩散过程进行宏观说明。本发明具有帮助人们的认识由抽象向具体转化,应用范围广及对界面的分析更便捷、准确和规范的优点。
碳纤维表面全碳涂层的制备方法,它涉及碳纤维制备领域。本发明要解决现有碳纤维复合材料中碳纤维与树脂基体之间的弱界面的问题。本发明的操作如下:一、碳纤维的处理;二、酚醛树脂的预聚合;三、酚醛树脂浆料的涂覆;四、酚醛树脂的固化;五、酚醛树脂的炭化。本发明的制得的碳纤维表面全碳涂层的层间剪切强度分别提高了12%~53%;纤维吸附能力明显提高,是良好的催化剂载体;本发明的碳纤维全碳涂层结构可控,可以通过调节酚醛的化学组成与组分配比,赋予碳纤维不同的功能或者应用于不同种类的树脂基体复合材料,本发明制备方法简单,效率高,效果好,易于工业化生产。本发明应用于航空、航天、军事、建筑等领域。
一种用于直升机旋翼振动控制的桨叶,包括基本桨叶(1),后缘襟翼(2),驱动器(3),襟翼连接轴(4)和X型放大机构(6),驱动器(3)安装在基本桨叶(1)内部靠近前缘1/4弦长,径距70%处;后缘襟翼(2)通过襟翼连接轴(4)安装在基本桨叶(1)径距70%-90%处,宽度为25%弦长;X型放大机构(6)的两端分别连接驱动器(3)和后缘襟翼(2),所述的驱动器(3)包括碳纤维复合材料圆形管(7)和两片压电复合材料单元(5)。它可以通过对智能驱动器施加不同频率和大小的电压来控制驱动器的输出频率和输出位移,且不用弹簧来提供恢复力,可以在一个很大的带宽内工作,实现旋翼振动的高效控制。本发明结构简单,易于控制,实用性强。
本发明提供一种基于EB-PVD与Sol-Gel的全固态参比电极制备方法,采用满足大规模工业生产的EB-PVD技术,在Ti基体上沉积Mo/Ta二元合金薄膜,对制备态薄膜在控制O2气氛下进行后氧化处理,形成混合金属氧化物层,使得二元合金膜层具备参比电极功能;以丙烯酰胺及丙烯酸为载体,制备维持电极电位稳定的Sol-Gel复合材料导电功能层;集成所制备的参比电极功能层及导电层,构建具有五层结构的全固态参比电极。本发明EB-PVD的沉积速率较快,能够在10min~30min内沉积数百微米的功能层薄膜,大大降低了制备时间。制备态的薄膜采用后氧化工艺处理,使得薄膜出现从未氧化到完全氧化的梯度状态,确保电化学性能的有效性。
改性氰酸酯基树脂及其制备方法与使用方法以及用其制备预浸料层压板的方法,本发明涉及电子电器、航空航天等复合材料应用领域。本发明为解决现有制备改性氰酸酯基树脂的方法反应时间长以及现有氰酸酯基复合材料采用溶剂成型工艺生产预浸料的过程中由于溶剂易挥发而导致树脂含量不易控制的问题,产品:由单独包装的改性氰酸酯基树脂组分和单独包装的环氧树脂组分组成。制备方法:一、制备改性氰酸酯基树脂组分;二、环氧基树脂组分。使用方法:将改性氰酸酯基树脂组分和环氧基树脂组分搅拌混合。预浸料层压板制备:将改性氰酸酯基体树脂压制成树脂膜贴在载体两面,压制成单层预浸料后在温度为175~195℃下固化3h~6h,得到预浸料层压板。
本发明公开了一种载重车辆翻新轮胎胎体剩余寿命预报方法,旨在提供一种科学准确有效、方便经济的载重车辆翻新轮胎胎体剩余寿命预报方法。它包括下列步骤:建立新轮胎径向刚度数据库;然后进行胎体橡胶老化实验,分三级测取胎体老化后的橡胶基体弹性模量,接着计算复合材料胎体弹性模量,再将计算值输入计算机进行轮胎承载变形有限元仿真,求径向刚度并建立数据库;建立安全系数数据库;翻新轮胎加载变形实测试验,求得径向刚度;利用剩余安全系数公式求得剩余安全系数Δf值;最后进行胎体剩余寿命预报。本发明适用于旧轮胎胎体或翻新轮胎剩余寿命测试预报。
本发明涉及天然植物纤维增强的地质聚合物复合材料及其制备方法。本发明属于艺术造型和环保材料领域。按重量百分比,本发明的组成为:粒径为200目的低温煅烧高岭土30~70%,废弃亚麻极短纤维5~40%,细度为150目的电厂粉煤灰或电石渣0~30%,激发剂5~10%、促进剂4~5%,硬化剂为浓度12%的NAHO水溶液,促进剂为工业硅酸钠,模数M=3.3,颜料0~1%。本发明复合造型材料可取代于传统的艺术造型材料石膏、水泥、粘土,适用于制造建筑装饰用的仿石艺术品、浮雕墙砖、雕塑、地砖等产品。本复合材料成本低、性能优于传统材料。
本发明提供的是一种多芯光纤驱动的微搅拌器。包括一段多芯光纤经熔融拉锥制成的锥体状多芯光纤和由复合材料制成的微小粒子,微小粒子位于锥体状多芯光纤的锥体端,锥体状多芯光纤的非锥体一端连接光源,锥体状多芯光纤的多个纤芯出射光同时作用到直立悬浮液体中的微小粒子上,所述的微小粒子的上体为密度较小材质制成的一个球体和旋转轴、底部为密度较大的材质制成的带有由多个翼的构成的“类风车”结构。本发明具有体积小、重量轻、结构简单、价格便宜、易操作、混合效率高,有利于减少试剂等特点。可广泛应用在生物和化学领域。
羧甲基纤维素-甲基丙烯酸甲酯接枝共聚物乳液的合成方法,它涉及了一种接枝共聚物乳液的合成方法。本发明解决了现有方法需要加入表面活性剂,存在成本高、工序繁多、制备出的羧甲基纤维素-甲基丙烯酸甲酯接枝共聚难以作为添加剂用于制备植物纤维-无机质复合材料的问题。本发明的羧甲基纤维素-甲基丙烯酸甲酯接枝共聚物乳液按如下方法进行合成:一、将羧甲基纤维素钠水溶液加热、惰性气体保护;二、加入过硫酸钾,再加入甲基丙烯酸甲酯;即得到羧甲基纤维素-甲基丙烯酸甲酯接枝共聚物乳液。本发明的方法无需加入表面活性剂,成本低、工艺简单、制备出了适于制备植物纤维-无机质复合材料的羧甲基纤维素-甲基丙烯酸甲酯接枝共聚物乳液。
本发明属于电化学传感器技术领域,具体涉及一种基于Cs/Ce‑MOF复合材料的电化学传感器用工作电极的制备。本发明目的是为了解决目前用来检测色氨酸的电化学传感器线性范围窄、检测限高,稳点性差以及响应时间慢的问题。产品:由GCE电极和GCE电极外包裹的Cs/Ce‑MOF修饰膜构成;以此工作电极构建的电化学传感器对色氨酸具有良好的检测性能。它的线性检测范围是2.5×10‑7M–3.31×10‑4M,检测限为1.4×10‑7M。
本发明公开了一种使用NiCl2制备耐高温介电性吸波剂C@SiC晶须粉末的制备方法,属于耐高温电磁波吸收与防护复合材料技术领域。本发明解决了目前应用的磁性吸波材料在高温下都会有不同程度的不可逆氧化,且磁性材料密度远大于介电材料的问题。本发明方法:一、SiC晶须烘烧后用HF溶液浸泡;二、NiCl2水溶液,三、NiCl2水溶液与步骤一处理的SiC晶须混合,搅拌均匀,烘干,研磨均匀;四、惰性气体保护下烧结,去除杂质,烘干,研磨,得到C@SiC粉末。并且本发明还可以在步骤四研磨后记性二次烧结。本发明的C@SiC晶须粉末在常温下具有很好的抗氧化能力。
一种纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合溢油治理材料的制备方法,涉及一种疏水-亲油-凝油性能兼具的多孔网络状结构材料的制备方法。所述方法步骤如下:(1)纤维素气凝胶的制备;(2)超疏水纤维素气凝胶的制备;(3)制备氨基甲酸烷基酯类凝油剂;(4)纤维素气凝胶-氨基甲酸烷基酯类凝油剂复合材料的制备。本发明采用天然可再生的纤维素进行疏水改性作为原料制备吸油材料,将吸油材料与凝油剂有效复合制备的溢油治理材料兼具凝油剂的凝油性能和吸油剂的吸油性能,具有成本低、环境友好,吸油快速、凝油效果好、保油率高、经济、可生物降解等许多优点。
本发明提供了一种Ba2+置换无机聚合物制备钡长石块体陶瓷的方法,属于制备钡长石块体陶瓷方法技术领域。制备无机聚合物:将铝硅酸盐粉体溶解于硅酸盐或铝酸盐水溶液中,注模成型,经固化后获得无机聚合物。配置含Ba2+水溶液,摩尔浓度为0.1~2mol/L。将步骤一制备的无机聚合物浸泡在步骤二制备的含Ba2+水溶液中进行离子置换。将步骤三获得的置换后的无机聚合物干燥,即获得非晶态钡长石前驱体。将步骤四获得的钡长石前驱体进行高温处理,即获得钡长石块体陶瓷。铝硅酸盐聚合物可直接浇筑成型复杂形状构件,经过离子置换和高温处理后可直接获得复杂形状BAS陶瓷;铝硅酸盐聚合物技术将为高效合成兼具复杂形状的BAS陶瓷及其复合材料提供一条新途径。
基于石墨烯/二硫化钼复合的气体敏感材料及其制备方法,它涉及一种气体敏感材料及其制备方法。本发明是为了解决本征石墨烯气体传感器纳米颗粒只对少数气体有高的灵敏度的技术问题。材料中二硫化钼包裹在石墨烯外表面。制备方法:一、将浓硫酸冷却,加入天然鳞片石墨,高锰酸钾,搅拌,再加入由双氧水和蒸馏水组成的混合溶液,离心并洗涤,将沉淀溶于去离子水中,得到溶液;二、将钼酸钠、半胱氨酸和十六烷基苯磺酸钠溶于去离子水中,加入步骤一所得溶液,放入反应釜中,离心清洗,冷冻干燥,即得。本发明的复合材料具有更高的选择性和敏感性。本发明属于气体敏感材料的制备领域。
碳纳米管/聚希夫碱聚合物及其制备方法和应用,涉及碳纳米管与聚希夫碱的复合材料及其制备方法和应用。解决现有聚希夫碱的光电变色响应灵敏度低、热稳定性差的问题。本发明聚合物是将氨基化碳纳米管、芳香二胺单体和二醛基化合物原位聚合反应得到的,首先将氨基化碳纳米管和部分二醛基化合物混合加热至有回流液产生时,再将芳香二胺单体和剩余二醛基化合物混合物分批注入,继续反应即可。本发明聚合物有电致变色、酸致变色、光致变色形为,良好的热稳定性,可用于显示器与酸碱传感器。电致变色、酸致变色、光致变色灵敏,并且具有可逆的酸致变色和光致变色行为。
一种碳立体织物纤维整体表面改性的方法,它属 于碳立体织物及其复合材料领域。它将进行了去涂层处理的碳 立体织物浸入铵盐溶液中作为阳极,以 对石墨板作为阴极,通以脉冲式直流电流进行改性处理,然后 采用超声离心法进行清洗,再烘干;具体条件如下:(1)去涂层处理是采用烧蚀法,即在N2保护下300~400℃烧蚀2~6h;(2)铵盐溶液其浓度为0.001mol/l~1.5mol/l;(3)改性处理的电流密度为20~1000mA/g,脉冲频率为0.002~20Hz,脉冲工作比为0.01~0.7;(4)改性处理时间为5~50min,处理温度为10~50℃。它是一种可以有效的对碳立体织物中的纤维进行均匀化表面改性,并使其复合材料的成型工艺性和整体综合性能得到改善的方法。
本发明提供了一种翼型框架与蒙皮一次性固化成形工艺方法。它采用内置可拆卸分组模具,模具在横向上由纵梁分割形成不同的模具组,每组由一组模块和中心滑轨组成,每组中的模块与其中心滑轨可相互滑动并在成形后依次从型腔中取出;在所有隔框、纵梁处设有与框架外形一致的凹槽;翼型纵梁腹板为复合材料与“I”形合金板的组合体;隔框纤维采用缠绕法在凹槽内铺设;完成框架纤维铺设后,统一铺设蒙皮纤维,与隔框一样形成口盖边缘框;之后在外表面置真空袋,采用真空膜压法注脂成形,根据纤维树脂基体复合工艺要求利用电子束加热或在高温炉中加热或常温固化技术实现框架与蒙皮一次性固化成形。本发明零件少,重量少,生产周期短,成本低,抗蚀能力、抗疲劳能力提高2倍以上,安全系数高。
氮磷硫三元共掺杂有序介孔碳材料的制备方法,本发明涉及一种氮磷硫三元共掺杂有序介孔碳材料的制备方法,它为了解决现有的单一杂原子掺杂对介孔碳材料电容性能提高有限的问题。首先制备有序介孔二氧化硅模板(KIT‑6);通过纳米灌注法将蔗糖、磷酸和氨基硫脲混合溶液与KIT‑6分散液在40℃~60℃搅拌陈化10 h~14 h。将得到的糊状复合物放置于烘箱中于70℃~90℃下干燥10 h~14 h,最后置于管式炉中在高纯氮气下(氮气流速为50 mL/s)于700℃~900℃热解1~3 h,加热速率为2℃/min。碳化后的复合材料浸没于HF溶液中并搅拌以除去二氧化硅模板,抽滤,用超纯水和乙醇各洗涤,并干燥后得氮磷硫三元共掺杂有序介孔碳材料(NPS‑OMC)。本发明通过模板采用纳米灌注制备氮磷硫三元共掺杂有序介孔碳材料,该材料电极的比电容可以达到了343 F/g。
一种CdS/CoO纳米异质结构的制备方法,本发明涉及半导体复合材料制备方法领域。本发明要解决现有催化剂对太阳能转化率低、成本高的技术问题。本方法:首先将CdS纳米棒浸泡在含有二甲基咪唑的甲醇溶液中,二甲基咪唑利用甲醇中微量的水进行水解,使CdS纳米棒表面形成局部碱性环境,然后将Co(NO3)2的甲醇溶液加入上述溶液中,得到CdS/Co(OH)2纳米复合材料;最后通过在惰性气氛中煅烧,得到CdS/CoO纳米异质结构催化剂。本材料在没有贵金属材料作为助催化剂的条件下,充分利用了可见光,增加了太阳能的转化利用率,对于可见光区域有很好的光响应。该材料可用作光解水制氢反应中。
一种纳米纤维素/聚氨酯泡沫复合弹性体的制备方法,本发明涉及纤维素复合材料的制备方法。本发明要解决纤维素泡沫/气凝胶弹性性能差,经过压缩后不能回弹的问题。方法:一、制粉末,抽提处理,加入蒸馏水;二~三、脱除木质素;四、脱除半纤维素;五、机械解纤处理;六~七、将纳米纤维素浸入到聚氨酯泡沫中,再进行干燥处理。本发明制得的纳米纤维素/聚氨酯泡沫复合弹性体不仅具有纳米纤维素的高吸附性,并且保留了聚氨酯泡沫的良好弹性性能。可广泛应用于纳米颗粒模板材料、油水分离材料、导电复合材料、过滤材料领域。
一种耐高温双马来酰亚胺树脂载体结构胶膜及其制备方法,它涉及高温固化耐高温结构胶黏剂。本发明要解决现有双马来酰亚胺胶膜不兼具高耐温等级和高韧性的问题。本发明的胶膜由双马来酰亚胺树脂、工艺改性剂、增韧改性剂、增容剂及触变剂组成。制备方法:先将双马来酰亚胺树脂与工艺改性剂进行预聚合得到双马树脂预聚体,然后通过机械共混法将双马树脂预聚体、增韧改性剂、增容剂和触变剂混合均匀制得胶料,在载体辅助成膜下采用三辊涂布制膜机制备胶黏剂。本发明胶黏剂具有耐高温和高韧性特点,其玻璃化转变温度达280℃以上,蜂窝滚筒剥离强度达75.0N.m/m左右。本发明胶黏剂用于航空航天领域金属或复合材料耐高温结构件的胶接。
本发明公布了一种不饱和聚酯树脂粘接玻璃纤维增强木梁及其实施方法,属于建筑结构材制造领域。该玻璃纤维增强木梁主要由胶合木梁和玻璃纤维布组成,通过在木梁底部局部利用不饱和聚酯树脂粘贴玻璃纤维布对其进行增强。其制备方法是通过备料加工、指接、冷压、预处理、后期处理等一系列过程实现胶合木梁的制备和玻璃纤维布的局部增强。本发明通过局部增强的方式解决既有结构因连接部位阻碍而难以增强和木材材质缺陷引起的木质复合材料性能较差的问题,同时利用不饱和聚酯树脂粘接玻璃纤维增强省去了胶黏剂的成本并可以粘接较多层数的玻璃纤维布以达到较高的增强强度。
本发明公开了一种基于磷掺杂石墨烯负载磷化镍材料的锂硫电池正极材料的制备方法,所述方法步骤如下:(1)向氧化石墨烯中添加表面活性剂,获得氧化石墨烯分散液;(2)将镍源、碱液加入到蒸馏水中,得到盐溶液;(3)向氧化石墨烯分散液中加入盐溶液,并水热反应,随后清洗,冷冻干燥,得到负载镍前驱物的石墨烯复合材料;(4)将负载镍前驱物的石墨烯复合材料进行磷化反应,获得磷掺杂石墨烯负载磷化镍材料;(5)将磷掺杂石墨烯负载磷化镍材料与升华硫复合,得到磷掺杂石墨烯负载磷化镍材料的锂硫电池正极材料。本发明制备的磷掺杂石墨烯负载磷化镍材料拥有三维的空间结构,从而对硫有明显的限域作用,显著抑制多硫化锂的穿梭效应。
本发明涉及一种耐高温抗冲击计算机显示器壳体。随着互联网的迅速发展,计算机的普及和应用,越来越的人接触到计算机,但是随着其发展迅速,越来越多的问题涌现,重众周知计算机在进行使用时,离不开显示器来进行系统显示。一种耐高温抗冲击计算机显示器壳体,其组成包括:壳体内胆(1),所述的壳体内胆采用铝镁合金内胆,所述的壳体内胆外依次为复合材料层(2)和隔热层(3),所述的壳体内胆、复合材料层和隔热层上开有凹槽,所述的凹槽内放置有橡胶减震座(4),所述的隔热层的外侧上涂有光触媒涂层(5),显示器壳体内左右两端的橡胶减震座布置在内部,显示器壳体内上下两端的橡胶减震座均伸出壳体外部。本发明用于耐高温抗冲击计算机显示器壳体。
一种电加热管道相变温控装置。主要解决现有的对流体传输管道进行加热保温的技术手段不十分理想,难以同时实现节约能源和高效保温的问题。其特征在于:所述加热层(8)采用有机固-液相变材料构成,在所述加热层(8)内,沿管道轴向布置若干内嵌碳纤维复合材料电热体的石英加热管(9),石英加热管内填充低氧气体,每条石英加热管分别与一个温控开关(3)相串联,所述温控开关亦位于加热层(8)内,所述各石英加热管串联温控开关后彼此并联,经绝缘导线引出后与外部电源(7)和外部电源控制开关(6)相连接构成电流回路。具有可维持恒温运行以及热利用效率高、节省能源的特点。还可以减少输油管道材料内部产生的热应力,延长管道使用寿命。
本发明公开了一种一体成型移动建筑物的制造方法,该方法包括覆盖抗老化材料层、覆盖多轴向玻璃纤维复合材料层、覆盖聚氯乙烯泡沫层、再次覆盖多轴向玻璃纤维复合材料层、离模和注流、密封、注入树脂和凝固成型这些步骤。本发明提供的一体成型移动建筑物的制造方法,制造工艺简单、成本低廉,制造出的移动建筑物是一体成型,该成品在移动或搬迁时,只需整体动作,无需拆散,提高了移动或搬迁的方便性;同时,在遇到大风时,该建筑物可以很好的抓地,具有很好的抗风性能,该方法制造出来的移动建筑物具有搬迁方便、安装简便、高抗风、高强度、抗老化、抗变形及成本低等特点。
仿蒸腾作用实现陶瓷浆料在碳纤维编织体内的运输方法,本发明涉及一种陶瓷浆料在碳纤维编织体内高效快捷引入的方法,它为了解决现有高性能碳/陶复合材料制备过程中陶瓷浆料引入工艺复杂以及纤维损伤的问题。运输方法:将陶瓷粉体浆料或陶瓷前驱体浆料倒入容器中,碳纤维编织体放入容器中接触陶瓷粉体浆料或陶瓷前驱体浆料,通过仿蒸腾作用使陶瓷粉体浆料或陶瓷前驱体浆料引入碳纤维编织体中,从而完成陶瓷浆料在碳纤维编织体内的运输。本发明利用丙酮和乙醇自身的挥发性以及与碳纤维之间的润湿性,实现陶瓷浆料在碳纤维编织体内的高效快捷引入,该方法具有良好的普适性,工艺简单,设备成本低,为制备军用高性能碳/陶复合材料提供了新的思路。
本发明提出了一种通过磁力实现背部随动支撑的搅拌摩擦焊接方法,属于搅拌摩擦焊领域,特别是涉及一种通过磁力实现背部随动支撑的搅拌摩擦焊接方法。解决了现有热塑性聚合物及其复合材料搅拌摩擦焊焊缝成形差和根部未焊透缺陷等问题。它包括焊前清理、待焊板材装夹、安装磁力装置、下支撑体的定位与安装、背部随动支撑的搅拌摩擦焊等步骤。它主要用于消除热塑性聚合物及其复合材料搅拌摩擦焊的焊接缺陷。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!