一种用于薄带连铸侧封板的陶瓷复合材料及其制备方法,它涉及一种陶瓷复合材料及其制备方法。它要解决传统侧封板的热导率高、磨损严重、密封差、不可二次加工和重复利用,制备成本高、能源消耗大的问题。本陶瓷复合材料由氧化锆、氮化硼和添加剂组成。制备方法:一、称取原料;二、将原料球磨混合;三、干燥得到均匀的混合粉末;四、将混合粉末热压烧结、无压烧结、气压烧结或热等静压烧结,即得到用于薄带连铸侧封板的陶瓷复合材料。本陶瓷复合材料致密度为94%~99%,室温下三点弯曲法测试的抗弯强度为260~420MPa,用单边切口梁法测试的断裂韧性为3~8MPa·m1/2。广泛应用于侧封板材料领域中。
采用超声波振动进行多孔结构铝基复合材料塞焊的方法,它涉及铝基复合材料塞焊方法。它解决了现有多孔结构焊接接头多,操作复杂,扩散焊需要高真空大压力的方法也不适用,采用常规熔焊的方法高温加热会使增强相陶瓷与基体铝合金发生有害反应,使增强相严重烧损,降低接头的强度的问题。本发明的方法为:一、首先对合金柱(1)表面进行预处理;二、将铝基复合材料(4)预热、施加超声波振动;三、将表面涂有钎料的合金柱(1)放入铝基复合材料(4)的孔(5)中,将铝基复合材料(4)预热,向孔(5)壁加热,钎料环(8)熔化后施加超声波振动,将间隙填满,即完成焊接。本发明焊接的接头的抗剪强度大、接头的强度高、性能可靠。
一种高综合性能的含钨酸锆的铝基复合材料的制备方法,涉及一种ZrW2O8的铝基复合材料的制备方法。为了解决现有ZrW2O8/Al复合材料强度较低,且γ‑ZrW2O8含量过多导致复合材料热膨胀系数较大的问题。方法:称取ZrW2O8粉、高强度陶瓷粉和铝基体为原料;将高强度陶瓷粉和ZrW2O8粉混合并进行球磨然后预压得到增强体预制体,预热和熔融态金属基体制备,液态铝浸渗,复合材料退火处理。本发明采用多种粒径的混合配比提高了增强体的体积分数,通过去应力退火处理减小内应力从而降低复合材料的热膨胀系数,复合材料的综合性能改善。
一种金属材料与非金属复合材料的连接方法,它涉及一种材料间的连接方法。它解决了采用现有连接金属材料和非金属复合材料的方法连接后的接头存在强度低、耐热性差的缺陷。本发明金属材料与非金属复合材料的连接方法按以下步骤实现:一、将非金属复合材料和金属材料的连接面进行处理使连接面粗化;二、将无机胶黏剂与金属粉末混合后,涂覆到复合材料的连接面上,再对复合材料施加压力得到连接面带有金属化改性层的复合材料;三、对复合材料连接面上的金属化改性层用砂纸打磨;四、在真空钎焊炉中保温;即完成金属材料与非金属复合材料的连接。本发明的方法连接的金属材料与非金属复合材料连接面的连接强度高,耐热性好。
一种无残余热解碳的层状铝基复合材料的制备方法,涉及一种无残余热解碳的层状铝基复合材料的制备方法。本发明为解决现有层状铝基复合材料制备过程中厚度控制方法复杂、厚度控制不准确、成本高、层状复合材料界面结合性能弱、复合材料制备过程中预制体易坍塌的问题以及制备的层状铝基复合材料中存在残余热解碳的问题。一、称料;二、SiC浆料制备;三、SiC纳米线生片流延成型;四、预制体制备;五、去脂处理、预热及残余热解碳去除;六、液态铝浸渗。本发明实现了热解碳的氧化去除并预热时间缩短,厚度控制方法简单厚度准确、工艺简单,铝金属箔分隔了SiC纳米线层且能保证复合材料层状结构的完整性;复合材料界面结合优异。
大尺寸薄片状金刚石/金属复合材料的制备方法,涉及一种金刚石/金属复合材料的制备方法。目的是解决薄片状金刚石/金属复合材料制备时易损坏和制备效率低的问题。制备方法:制备复合材料热膨胀试样并测试热膨胀系数,选取模具,要求模具的热膨胀系数高于复合材料,模具型腔的尺寸精度和表面粗糙度分别优于设计的复合材料,在模具型腔中填充金刚石颗粒,采用提拉式真空压力浸渗方法浸渗。本发明可以实现0.2~0.4mm厚大尺寸薄片金刚石/金属复合材料的精密成型,所得薄板厚度尺寸精度0.02mm以内,表面粗糙度不大于1.6μm。本发明适用于大尺寸薄片状金刚石/金属复合材料的制备。
本发明提供了一种飞机复合材料成型模模面分段加工方法,将复合材料成型模复杂模面按最小实体原则分段,并设置加强筋及基准,采用板料分片数控加工上下模面,最后按基准组合焊接。主要工艺参数:分段选用板料厚度50~240mm,工艺筋厚10~20mm;筋底R大于R8;数控加工分段模面与支座焊接面,采用30刀终加工跨步0.7;焊接坡口按GB985-88,Y型坡口,坡角40~60度;P=1.0~2.0mm;B=1.5mm。本发明的核心是将复合材料型模复杂模面按最小实体原则分段,采用板料分片数控加工上下模面并留好基准,最后按基准组合焊接。该技术的采用,解决了复合材料成型模复杂模面不易成型,焊后气密不好问题。
钛三碳二‑硫化铋纳米复合材料的制备方法及应用,涉及肿瘤近红外光治疗技术领域。本发明的目的是为了解决肿瘤手术切除以及放、化疗方法缺乏靶向性,且灵敏度及特异性不高的问题。方法:先将钛三铝碳二进行蚀刻处理,蚀刻处理后进行剥离处理;然后以剥离处理后的钛三铝碳二为基底,通过水热合成反应制备得到油溶性钛三碳二‑硫化铋纳米复合材料,再将油溶性钛三碳二‑硫化铋纳米复合材料转变成水溶性钛三碳二‑硫化铋纳米复合材料,最后将水溶性钛三碳二‑硫化铋纳米复合材料依次进行甲氧基聚乙二醇胺包被和(3‑丙羧基)三苯基溴化膦修饰,得到钛三碳二‑硫化铋纳米复合材料。本发明可获得钛三碳二‑硫化铋纳米复合材料的制备方法及应用。
本发明涉及一种高尺寸稳定性、耐磨性优异的PEEK阀片复合材料及其制备方法。该发明材料是一种气体压缩机阀片用CaCO3晶须/PTFE/PEEK复合材料。制备该复合材料的技术工艺的创新性体现在:通过碳酸钙晶须和聚四氟乙烯复配填充增强PEEK材料,以及利用聚四氟乙烯提高PEEK复合材料耐磨性,进而将CaCO3晶须/PTFE/PEEK复合材料通过双螺杆挤出机共混挤出,牵引、冷却、切粒后得到改性高尺寸稳定性、耐磨性优异的PEEK阀片复合材料。在气体压缩机阀片领域,高尺寸稳定性、耐磨性优异的PEEK阀片复合材料与传统金属材料相比,具有良好的高刚性和高韧性,同时兼顾较高的尺寸稳定性和耐磨性、抗疲劳性,另外还有可以提高压缩机效率并降低噪音的优点。
一种气相沉积法制备树脂基复合材料内层的方法,它涉及一种树脂基复合材料内层的制备方法。本发明的目的是要解决现有树脂基复合材料不能够满足超高温、强冲刷及短时程的空气动力学冲刷烧蚀的问题。方法:一、对树脂基复合材料基材进行内表面处理;二、制备改性树脂:采用三官能团环氧树脂、固化剂、改性剂、促进剂、分散剂和稀释剂制备改性树脂;三、将步骤二制备的改性树脂喷涂到步骤一得到内表面处理后树脂基复合材料基材的内表面,并沉积一定时间;四、采用梯度升温方式固化后,即得到树脂基复合材料内层。本发明主要用于制备树脂基复合材料内层。
一种连续碳纤维复合材料螺栓,本发明属于螺纹紧固件领域,它为了解决现有复合材料螺栓强度低、尺寸大的问题。本发明连续碳纤维复合材料螺栓是以连续碳纤维作为增强体,以咪唑环氧树脂作为基体制成预浸料,预浸料按照质量百分含量由连续碳纤维、咪唑环氧树脂和固化剂而成,通过预浸料固化成型连续碳纤维复合材料螺栓。该连续碳纤维复合材料螺栓可以为M5、M6或M8六角头螺栓。本发明连续碳纤维复合材料螺栓采用了连续纤维,具有较高的强度,尺寸达到了传统金属螺栓的尺寸大小,与金属螺栓相比具有质量轻、比强度高、耐腐蚀、耐候、绝缘性能好等优点。
一种二硫化钼/硒化镍复合材料及其制备方法和应用,它涉及一种复合材料及其制备方法和应用。本发明的目的是要解决现有析氢反应贵金属催化剂价格昂贵,不利于大规模工业生产,复合催化剂基底质量高和不能满足催化活性需求的问题。一种二硫化钼/硒化镍复合材料由二硫化钼和硒化镍纳米颗粒组成,且二硫化钼包覆在硒化镍纳米颗粒的外表面。方法:一、制备硒化镍纳米颗粒;二、复合,得到二硫化钼/硒化镍复合材料。一种二硫化钼/硒化镍复合材料用于电解水制氢。本发明可获得一种二硫化钼/硒化镍复合材料。
一种利用水热法制备氧化钛纳米管/碳/氧化镍复合材料的方法,它涉及一种复合材料的制备方法。本发明的目的是要解决现有方法制备的氧化钛纳米管复合材料存在电容器容量小和性能稳定性差的问题。方法:制备含有Ni(NO3)2·6H2O和CO(NH2)2的水溶液;将含有Ni(NO3)2·6H2O和CO(NH2)2的水溶液加入到水热反应釜中,然后将表面负载碳的氧化钛纳米管放入水热反应釜中,再进行水热反应,得到氧化钛纳米管/碳/氧化镍复合材料。本发明制备的氧化钛纳米管/碳/氧化镍复合材料具有很高的电容值,电容值高达120.87F/m2。本发明可获得一种利用水热法制备氧化钛纳米管/碳/氧化镍复合材料的方法。
一种CNT/Co/MoS2复合材料的制备方法,它涉及一种硫化钼的改性方法。本发明的目的是要解决现有硫化钼的表面改性处理方法存在改性后的硫化钼仍然存在疏水性的问题,或者表面改性处理方法因涉及大量有机溶剂,引起严重的环境污染问题。制备方法:一、酸处理,得到酸化后碳纳米管;二、制备CNT/Co;三、负载MoS2,得到CNT/Co/MoS2复合材料。优点:硫化钼在碳纳米管表面的包覆比较均匀。本发明主要用于制备CNT/Co/MoS2复合材料。
ABS树脂/导电炭黑/沥青基碳纤维导电复合材料及其制备方法,它涉及碳纤维导电复合材料及其制备方法。本发明要解决现有导电复合材料存在电导率低和力学性能差的技术问题。方法如下:步骤一、称取ABS树脂、导电炭黑、沥青基碳纤维、相容剂、抗氧化剂和偶联剂;步骤二、将导电炭黑烘干;步骤三、将沥青基碳纤维放入N,N-二甲基甲酰胺和三氯甲烷的混合液中浸泡,超声处理,洗涤后干燥;步骤四、将ABS树脂、相容剂、抗氧化剂和偶联剂混合均匀加入经步骤二处理的导电炭黑熔融混炼,再加入经步骤三处理的沥青基碳纤维继续熔融混炼,然后置于平板硫化机内压制。将被广泛应用于耐磨管道、管道防腐和管道增强等领域。
以废纸纤维和废弃皮革胶原合成复合材料的制备方法,它涉及一种复合材料的制备方法。本发明解决了鞣革后切削和裁剪产生的固体废弃物污染环境、造成胶原蛋白流失的问题。本制备方法如下:1.废纸纤维的脱墨处理;2.将胶原、水、脱墨的废纸纤维与增塑剂混合,然后滴加交联剂,同时调节pH值反应,再烘干成型,即得。本发明所用的原材料为废料,变废为宝解决了环境污染和胶原蛋白流失的问题,本发明所用废纸纤维分布为0.01mm~0.05mm,采用本方法制备的复合材料的抗拉强度可达5.06MPa,弹性模量0.09GPa,溶胀率可达31.20%。
本发明提供了一种由压电纤维复合材料驱动的可变形的可充气伸展机翼,属于可充气伸展机翼技术领域。本发明包括充气机翼和驱动元件,所述充气机翼包括蒙皮和拉条,所述驱动元件包括基板和压电纤维复合材料,基板为弯曲成弧面的矩形,压电纤维复合材料粘贴在基板的凹面上,基板的凸面与蒙皮的内壁粘合。本发明提出一种运用压电纤维复合材料对可充气伸展机翼进行驱动的方案,压电纤维复合材料与基板的凹面粘贴构成驱动元件,驱动元件与充气机翼的蒙皮内壁粘贴。本发明利用了压电纤维复合材料的驱动特性,可驱动充气机翼变形,从而解决可充气伸展机翼无法最优化气动效率的问题。本发明的结构简单,一体性强,运行稳定,驱动器制造方便,易于布置安装。
一种流延成型法、叠箔法和压力浸渗法结合制备层状铝基复合材料的方法。一种层状复合材料的制备方法。本发明为解决现有层状铝基复合材料制备过程中厚度控制方法复杂、厚度控制不准确、工艺复杂成本高、界面结合性能弱以及复合材料制备过程中预制体易坍塌的问题。一、称料;二、SiC浆料制备;三、SiC粉末生片流延成型;四、SiC粉末生片之间放置铝金属箔,冷压处理,得到层状预制体;五、去脂处理及模具预热;六、液态铝浸渗;本发明制备的层状复合材料,厚度控制方法简单,厚度准确、工艺简单,原材料成本低;因此复合材料工艺成本低;能保证了复合材料层状结构的完整性,界面结合优异;本发明适用于层状铝基复合材料的制备。
一种陶瓷基纤维编织复合材料与金属材料的碳纳米管辅助钎焊方法,它涉及纤维编织复合材料与金属材料的钎焊方法。本发明要解决现有陶瓷基纤维编织复合材料与金属材料钎焊过程中,钎料对复合材料表面润湿性差、接头强度低的问题。方法:一、在陶瓷基纤维编织复合材料的表面附着催化剂;二、调控反应温度、H2和CH4流量及压强,制备表面生长有碳纳米管的陶瓷基纤维编织复合材料;三、真空钎焊炉装料,在800~950℃下发生界面冶金反应后冷却,得陶瓷基纤维编织复合材料与金属材料的连接体。本发明方法所得连接体的接头抗剪强度为15~31MPa,比直接连接方法提高了5倍左右。本发明用于陶瓷基纤维编织复合材料与金属材料的连接。
一种用于粘接聚乙烯木塑复合材料的环氧树脂胶黏剂,它涉及一种胶黏剂。本发明要解决现有的胶黏剂用于粘接聚乙烯木塑复合材料存在耐水性能差的问题。一种用于粘接聚乙烯木塑复合材料的环氧树脂胶黏剂由甲组分和乙组分混合而成,所述的甲组分由环氧树脂、增韧剂和活性环氧稀释剂混合而成;所述的乙组分由聚酰胺环氧固化剂、硅烷偶联剂、脂肪胺、促进剂和耐水助剂混合而成。优点:用于粘接聚乙烯木塑复合材料具有剪切强度高,且耐水性优良的特点。本发明主要用于制备环氧树脂胶黏剂。
本发明提供了一种多通路复合材料异型管及其成型方法,涉及管道技术领域,多通路复合材料异型管成型方法包括:将形状记忆聚合物材料通过3D打印技术获得具有形状记忆性能的多通路异型管芯模的雏形件;加热后放入刚性模具中,进行吹胀后,得到多通路异型管芯模;加入填充物,直至多通路异型管芯模实心化后进行烘干、密封和固化;粘贴树脂基复合材料预浸料,抽真空后,再次固化,得到带有多通路异型管芯模的多通路复合材料异型管;倒出所述填充物,加热多通路复合材料异型管,得到多通路复合材料异型管成型件。与现有技术比较,本发明在多通路异型管芯模大型化时质量更轻、便于使用、污染小、表面精度高,更加适用于大型化的多通路异型管的制备。
低温冷烧制备无机聚合物复合材料的方法及其陶瓷化应用,本发明涉及一种无机聚合物复合材料的制备方法及其应用,它为了解决现有无机聚合物的力学性能低和烧结温度高的问题。制备方法:一、将硅酸盐粉体、铝硅酸盐粉体以及第二相材料采用高能球磨工艺混合;二、无机聚合物复合材料干粉加入水和减水剂,机械搅拌均匀,获得塑性无机聚合物坯体;三、坯体加压保温成型,控制加压成型的压力为250~600Mpa;四、成型后的试样置于烘箱中固化,得到无机聚合物复合材料。无机聚合物复合材料在400~800℃温度下进行高温陶瓷化处理,得到陶瓷化产物。本发明制备的无机聚合物复合材料力学性能优良,且高温陶瓷化温度低。
一种作为锂离子电池负极的Si@C-RG核壳结构复合材料的制备方法,涉及一种作为锂离子电池负极的Si@C核壳结构复合材料的制备方法。本发明是要解决目前纳米硅合成工艺复杂、产率低、成本高、难以规模化生产以及碳包覆层与基体结合力弱、松散、难以实现完整均匀包覆和导电性差的技术问题。本发明:一、制备微纳级枝晶硅粉末;二、包覆。本发明的优点:一、本发明方法具有硅结构形貌可控、高产率、低成本,操作简单、容易实现连续性规模化生产且循环性能稳定的优点;二、本发明的复合导电材料包覆层可以提高电子导电率,改善锂离子电池的高倍率性、循环性能和充放电比容量,提高了复合材料的振实密度,避免使用有毒还原试剂。
膨胀石墨插层法制备介孔碳/石墨片复合材料的方法,它属于介孔碳与石墨片的复合材料的制备领域。本发明要解决现有介孔碳基碳复合材料生产成本高、反应所需设备复杂、反应条件苛刻、产量低、难以工业化生产等技术问题。本发明方法如下:一、先将膨胀石墨进行热膨胀处理,再用表面活性剂进行修饰;二、制备介孔碳前躯体;三、制备介孔碳/石墨片复合材料前驱体;四、碳化。本发明制备的介孔碳与石墨烯复合材料具有导电性好、厚度可控、孔尺寸可控、比表面积较大等特点,制备的介孔碳/石墨片复合材料在燃料电池、锂离子电池以及超级电容器等领域有重要的应用价值。本发明采用廉价的膨胀石墨作为原料,具有成本低、方法简单、易于工业化生产等特点。
一种碱木质素/玉米淀粉/亚麻纤维热塑性复合材料的制备方法,涉及一种热塑性复合材料的制备方法。本发明是要解决现有方法制备木质素基热塑性复合材料过程中存在木质素熔体的流动性差,熔体冷却变脆,力学性能差的技术问题。制备方法为:一、将碱木质素、玉米淀粉和助剂预混后,送至双辊混炼机上进行混炼,混合均匀后,添加亚麻纤维,混合均匀,得到共混材料;二、将共混材料放到薄膜上,置于压片机上压成薄片,取下后冷却至室温,然后将薄片从薄膜上撕下,即得到碱木质素/玉米淀粉/亚麻纤维热塑性复合材料。本发明制备的热塑性复合材料质地均匀,碱木质素与玉米淀粉在助剂中混合均匀,相容性好。本发明应用于热塑性复合材料的制备领域。
以ZrO2为增强相的二硅酸锂微晶玻璃复合材料及其制备方法,它涉及二硅酸锂微晶玻璃复合材料及制备方法。它解决了现有生产周期长,成本高,产品容易变形,二硅酸锂微晶玻璃力学性能较低的问题。本发明由二硅酸锂基础玻璃和氧化锆粉体组成。制备方法为一.按照原始玻璃的成分配比球磨;二.将烘干的原料放入刚玉坩埚中高温熔化;三.将玻璃熔液倒入蒸馏水中水淬成1~2mm玻璃颗粒;四.将水淬后的玻璃颗球磨得到玻璃粉末;五.取二硅酸锂玻璃粉末与氧化锆粉体以酒精为介质进行混合球磨;六.进行真空热压烧结后,即制备出以ZrO2为增强相的二硅酸锂微晶玻璃复合材料。本发明不易变形、生产周期短和成本低,抗弯强度和断裂韧性指标优良。
一种导热绝缘聚丙烯复合材料及其制备方法和应用,它涉及一种导热绝缘材料及其制备方法和应用。本发明的目的是要解决现有聚丙烯复合材料的填料用量高,导热和绝缘性差,制备工艺复杂,不适合大规模工业生产的问题。一种导热绝缘聚丙烯复合材料由聚丙烯、组分A、组分B、组分C、抗氧剂和润滑剂制备而成;方法:一、称量;二、混合;三、挤出造粒,得到导热绝缘聚丙烯复合材料。本发明制备的导热绝缘聚丙烯复合材料的垂直热导率为0.8~1.2W/(m·K),平面热导率为1.5~3.4W/(m·K)。一种导热绝缘聚丙烯复合材料作为导热绝缘材料应用于电线电缆、汽车、电气电子或能源领域。
本发明提供一种碳纳米管增强酚醛‑有机硅树脂基碳纤维复合材料的制备方法,属于树脂基复合材料技术领域,具体方案如下:包括以下步骤:将碳纤维表面羧基化,将羧基化的碳纤维表面氨基化,将氨基化的碳纤维表面接枝二硫代氨基甲酸盐;将硝酸镍的乙醇溶液充分浸润接枝二硫代氨基甲酸盐的碳纤维得到负载镍的螯合物的碳纤维;将负载镍的螯合物的碳纤维、酚醛树脂和有机硅树脂混合,得到酚醛‑有机硅树脂基碳纤维复合材料,在管式炉中烧结,得到碳纳米管增强酚醛‑有机硅树脂基碳纤维复合材料。本发明首次在单向碳纤维复合材料中原位生长碳纳米管,同时酚醛‑有机硅树脂复合材料的力学性能有了很大提高。
多级结构Ti‑Al‑Cf层状复合材料的制备方法,它涉及一种复合材料的制备方法。本发明的是为了提供了一种多级结构Ti‑Al‑Cf层状复合材料的制备方法。制备方法如下:一、碳纤维布表面处理;二、Ti箔、Ti网与Al箔表面预处理;三、制备单元体;四、制备预制件;五、真空热压烧结,即得。本发明利用在Al熔点附近,熔融态的Al具有较好的流动性,在压力的作用下更易浸渗入碳纤维内部,形成充填充分,结合良好的碳纤维增强铝基复合材料;同时在压力的作用下,Ti箔、Ti网均与Al发生化学反应,连接成一个整体。因此,制备出的三维结构层状复合材料界面结合良好,界面强度高。本发明属于复合材料的制备领域。
复合型陶瓷粉体/聚偏氟乙烯复合材料的制备方法,它涉及一种复合材料的制备方法。发明是为了解决BaTiO3提高PVDF的介电常数低的技术问题。方法:制悬浊液A;制混合溶液D;将悬浊液A加入混合溶液D,将得到的灰黑色沉淀物用蒸馏水洗涤至洗液为中性,抽滤、真空烘干,然后加入到熔融的PVDF颗粒中,热压成型,加磁,得到加磁BT@Fe3O4/PVDF复合材料。本发明制备得到的加磁复合型陶瓷粉体/聚偏氟乙烯复合材料在100Hz频率下的介电常数高达300~500,与钛酸钡/聚偏氟乙烯复合材料相比提高了650~1100%。本发明属于复合材料的制备领域。
中冶有色为您提供最新的黑龙江有色金属复合材料技术理论与应用信息,涵盖发明专利、权利要求、说明书、技术领域、背景技术、实用新型内容及具体实施方式等有色技术内容。打造最具专业性的有色金属技术理论与应用平台!