1.本发明属于分布式光纤传感技术领域,尤其是一种带式输送机托辊故障的分布式光纤监测系统及方法。
背景技术:
2.带式输送机俗称皮带机,是煤矿、钢厂、港口等企业运输物料的主要设备,具有运输量大、输送距离长、输送范围广、运行费用低等优点。带式输送机中,托辊是拖曳传送带、实现物料传送的核心部件。托辊在长期运行后,容易发生卡死、变形、断裂等故障,继而引起带式输送机损坏甚至起火的事故。目前托辊故障检测主要采用人工徒步巡检的方式,现场运维工作量大,检测难度高。因此,针对托辊运行状况进行实时监测技术就显得尤为重要。
3.声音信号中含有大量的现场环境信息,通过采集声音来监测故障的方法已经被广泛应用于工业领域。但是传统的声音传感器不仅需要带电工作,而且易损坏。分布式光纤传感技术具有无需现场供电、抗电磁干扰能力强、耐腐蚀性能好、灵敏度高、长距离连续感知等特点。如何将分布式光纤传感技术在带式输送带工作应用是亟需解决的课题。
4.因此,发明一种带式输送机托辊故障的分布式光纤监测系统及方法来解决上述问题很有必要。
技术实现要素:
5.为了解决现有技术中的不足,本发明提供了一种带式输送机托辊故障的分布式光纤监测系统及方法。
6.为了实现上述目的,本发明提供如下技术方案:
7.搭建分布式光纤声波传感系统(das:distributed acoustic sensing),模拟不同托辊故障,利用das高灵敏度、信号进行时域、频域和时频域分析,实现托辊的故障诊断。
8.进一步的,das系统工作过程为:窄线宽光源发出的光脉冲被耦合器分为探测光和本地光,其中探测光经过声光调制器转化成光脉冲信号,再通过掺铒光纤放大器(edfa:erbium doped fiberamplifier)和隔离器注入探测光纤;
9.进一步的,对das系统采集到的原始信号先做数据预处理,数据预处理包括两个过程:1.数据归一化、2.加窗分帧:
10.数据归一化步骤如下:求数据均值:
[0011][0012]
所有数据进行去均值处理:
[0013]
x(n)=x(n)-m
x
[0014]
找出去均值数据的最大值|x(n)|max,并对所有数据进行归一化处理,
[0015]
得到:
[0016][0017]
式中,x(n)表示原始数列,mx表示数据均值,|x(n)|max表示原始数列最大值的绝对值。
[0018]
加窗分帧处理方法如下:
[0019]
通过对光纤信号在时间上进行分帧,以帧为单位对信号进行处理。将窗函数w(n)与原始信号s(n)相乘,对信号加窗获取帧信号,表达式如下:
[0020]
sw(n)=w(n)
×
s(n)
[0021]
本文选取hamming窗对信号进行分帧,hamming窗的数学表达式如下:
[0022][0023]
式中,n表示采样点序列,n表示采样点总数。
[0024]
进一步的,对das采集数据做时域分析,计算原始数据的均方根值,获取均方根值-位置对应曲线图,均方根值超过阈值振动点为疑似故障点,发生故障位置的托辊振动信号均方根值变化较大,而没有故障处信号均方根值较小:
[0025]
均方根值计算公式为:
[0026][0027]
其中xrms表示信号的均方根值,n是输入序列x的元素个数。
[0028]
进一步的,通过数据的频域和时频域分析,在时频图上确定该点是否为故障点:
[0029]
采用短时傅里叶变换(stft)对光纤振动信号进行时频分析,对于非平稳信号x(t)∈l2(r),其短时傅里叶变化可以表示为:
[0030][0031]
上式中,g(t)为窗函数,加窗后使得信号在以t时刻为中心的一个微小范围的信号特征得到凸显,当t变化时,g(t)所确定的时间窗也随之改变,并在t轴对信号进行滑动分割截取。
[0032]
进一步的,通过信号均方根值与对应位置的曲线图,可以判断出带式输送带故障发生位置:
[0033]
将正常托辊、托辊卡死、托辊无轴承和托辊断裂处每5秒信号的均方根值曲线放在同一坐标系内,得出均方根值随托辊工况的变化趋势:正常托辊的波形平稳,在0.05上下平稳波动;故障托辊的波形较正常托辊的变化明显,托辊卡死时波形集中在0.1~0.3,托辊无轴承和断裂两种情况均方根值均集中在0.4~1的区间。
[0034]
进一步的,对das信号的频域进行分析,不同工况的托辊信号能量在频域上的分布有所不同,对相应单元的归一化数据加窗分帧做快速傅里叶变化(fft):
[0035]
正常运行的托辊信号能量最小,而托辊无轴承情况的信号能量最大,故障托辊信号能量的极值主要集中于100~500hz。
[0036]
以上可得到一种基于分布式光纤声波传感的带式输送机故障诊断方法,在上述技
术方案中,本发明提供的技术效果和优点:
[0037]
可实现托辊的在线监测和故障诊断,准确检验并判断出故障点。
附图说明
[0038]
图1为本发明的das系统原理图
[0039]
图2为本发明的das系统数据分析方法总体流程框图
[0040]
图3为带式输送带故障点对应位置均方根曲线
[0041]
图4为不同工况托辊均方根值-时间对应曲线
[0042]
图5为不同工况托辊fft频域曲线;
具体实施方式
[0043]
为了使本领域的技术人员更好地理解本发明的技术方案,下面将结合附图对本发明作进一步的详细介绍。
[0044]
本发明提供了如图1-5所示的一种带式输送机托辊故障的分布式光纤监测系统及方法,本发明工作原理:
[0045]
参照说明书附图1-5,搭建分布式光纤声波传感系统(das:distributed acoustic sensing),对das系统采集到的原始信号先做数据预处理,对das采集数据做时域分析,计算原始数据的均方根值,获取均方根值-位置对应曲线图,对数据的频域和时频域分析,在时频图上的故障点,通过信号均方根值与对应位置的曲线图,确定带式输送带故障发生位置,对das信号的频域进行分析,确定不同工况的托辊运行情况,通过模拟不同托辊故障,利用das系统采集带式输送带的声波实时数据,通过时频域的分析实现托辊的在线监测和故障诊断,有效诊断故障、灵敏度高。
[0046]
以上只通过说明的方式描述了本发明的某些示范性实施例,毋庸置疑,对于本领域的普通技术人员,在不偏离本发明的精神和范围的情况下,可以用各种不同的方式对所描述的实施例进行修正。因此,上述附图和描述在本质上是说明性的,不应理解为对本发明权利要求保护范围的限制。
技术特征:
1.一种带式输送机托辊故障的分布式光纤监测系统及方法,其特征在于通过下述方式实现:搭建分布式光纤声波传感系统;对das系统采集到的原始信号先做数据预处理;对das采集数据做时域分析,计算原始数据的均方根值,获取均方根值-位置对应曲线图;对数据的频域和时频域分析,确定在时频图上的故障点,通过信号均方根值与对应位置的曲线图,确定带式输送带故障发生位置;对das信号的频域进行分析,确定不同工况的托辊运行情况。2.根据权利要求1所述的一种带式输送机托辊故障的分布式光纤监测系统及方法,其特征在于:均方根值计算公式为:其中xrms表示信号的均方根值,n是输入序列x的元素个数。3.根据权利要求1所述的一种带式输送机托辊故障的分布式光纤监测系统及方法,其特征在于:光纤振动信号数据的频域和时频域分析,其短时傅里叶变化可以表示为:
技术总结
一种带式输送机托辊故障的分布式光纤监测系统及方法,先搭建分布式光纤声波传感系统;对DAS系统采集到的原始信号先做数据预处理;对DAS采集数据做时域分析,计算原始数据的均方根值,获取均方根值-位置对应曲线图;对数据的频域和时频域分析,确定在时频图上的故障点,通过信号均方根值与对应位置的曲线图,确定带式输送带故障发生位置;对DAS信号的频域进行分析,确定不同工况的托辊运行情况。确定不同工况的托辊运行情况。确定不同工况的托辊运行情况。
技术研发人员:梁堃 王驰
受保护的技术使用者:上海大学
技术研发日:2022.04.12
技术公布日:2022/7/12
声明:
“带式输送机托辊故障的分布式光纤监测系统及方法” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)