1.本技术实施例涉及半导体技术领域,尤其涉及一种半导体结构尺寸的测量方法及设备。
背景技术:
2.随着半导体芯片的集成度越来越高,集成电路刻线的图形线宽尺寸已进入纳米级别,加工形成的关键尺寸(critical dimension,简称cd)对半导体芯片性能的影响越来越大,因此,精确测量半导体芯片的cd已成为提升半导体芯片性能和质量的关键。
3.由于原子力显微镜(atomic force microscope,简称afm)测量精度高,而且在采用非接触测量模式时可以在不破坏半导体结构条件下实现对半导体结构的测量,因此广泛应用于纳米级半导体结构的测量。
4.目前,afm采用非接触模式测量半导体结构表面时,通常是控制afm的探针在距离半导体结构表面上方5~10nm的距离处振荡,此时,通过检测半导体结构与上述探针之间的相互作用力即可分析出半导体结构的表面结构。然而,当半导体结构的表面存在宽度很小、且深宽比较大,即存在高深宽比的沟槽时,afm的探针需要到达沟槽的表面一定距离,在测量过程中很容易接触到该沟槽的侧壁,对半导体结构造成破坏。
技术实现要素:
5.本技术实施例提供一种半导体结构尺寸的测量方法及设备,可以解决现有技术中当半导体结构的表面存在宽度很小、且深宽比较大,即存在高深宽比的沟槽时,afm的探针需要到达沟槽的表面一定距离,在测量过程中很容易对半导体结构造成破坏的技术问题。
6.第一方面,本技术实施例提供了一种半导体结构尺寸的测量方法,该方法包括:
7.控制原子力显微镜的探针从预设基准位置沿垂直于待测半导体结构顶表面的方向,朝所述待测半导体结构顶表面移动第一距离;
8.控制所述探针沿平行于所述待测半导体结构顶表面的方向保持所述第一距离对所述待测半导体结构表面进行扫描,并检测所述探针在所述待测半导体结构表面上的各个扫描点的振幅;
9.根据所述探针在所述待测半导体结构表面上的各个扫描点的振幅,确定所述待测半导体结构的关键尺寸。
10.在一种可行的实施方式中,所述控制原子力显微镜的探针从预设基准位置沿垂直于所述待测半导体结构顶表面的方向,朝所述待测半导体结构顶表面移动第一距离之前,还包括:
11.控制所述探针从所述预设基准位置沿垂直于半导体基准样品顶表面的方向,朝所述半导体基准样品顶表面移动所述第一距离;
12.控制所述探针沿平行于所述半导体基准样品
声明:
“半导体结构尺寸的测量方法及设备与流程” 该技术专利(论文)所有权利归属于技术(论文)所有人。仅供学习研究,如用于商业用途,请联系该技术所有人。
我是此专利(论文)的发明人(作者)